SOL/R

Report Generator
for HP ELOQUENCE



The information contained in this document is subject to change without notice.

Marxmeier Softwareentwicklung (mse) makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Marxmeier Softwareentwicklung shal not be liable for
errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Published Editions:
A.01.00 - 1992

(© 1992-1995 Marxmeier Softwareentwicklung, Wuppertal, Germany.

Thisdocument containsinformationwhichisprotected by copyright. All rightsarereserved.
Reproduction, adaption or transl ation without prior written permissionis prohibited, except
under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government De-
partment of Defense is subject to restrictions as set forth in subparagraph (c) (2) (ii) of the
Rightsin Technical Dataand Computer Software clause in DFARS 252.227-7013. Rights
for non-DOD Government Departments and Agencies are set as forth in the Commercial
Computer Software Restricted Rights clause, FAR 52.227-19 (c) (1,2).

HP ELOQUENCE is a protected trademark of Hewlett-Packard GmbH.
HP-UX isaprotected trademark of Hewlett-Packard Inc.



Preface

This manual is divided into the following chapters:

Chapter 1 Introductionand general informati onabout SQL/R. Here you can find brief
descriptions and instructionsfor installation.

Chapter 2 Not included in thisversion.

Chapter 3 A quick overview of SQL/R using examples to present the functions and
use of SQL/R.

Chapter 4 Describes the editor program included with SQL/R.

Chapter 5 Explainsin detail the various function used to generate reports.
Chapter 6 Defines the syntax and use of the SQL /R language.

Appendix A Short reference guide of the SQL /R language.

Appendix B Date and time formats.

Appendix C  Description of differences between SQL/R and SQL.
Appendix D Environment Setup.

Appendix E  HP Eloquence format numbers.

Glossary Explanation of terms.

Index Key word index.

SQL/R A.01.00



Preface

Typographical Conventions

Unless otherweise noted, this manua uses the following symbolic conventions:

Comput er Font

L)

(G Henar)

italics

[]

{1

SQL/R A.01.00

Computer font indicates commands, keywords, options, literals,
source codes, system outputs and path names.

The symbol [ Jindicates a key on a computer keyboard or an
area or “button” on screen that can be activated by your mouse. For

example, indicates the Control key and isan on

screen button.

The symbol CTRL{ char ] indicates a control character. For exam-
ple (CTRL { Y] means you have to simultaneous press the Control
key and the Y key on the keyboard.

Within syntax statements, aword in italics represents a formal pa
rameter or argument that you have to replace with an actua value.
In thefollowing exampl e, you must substitute filename by the name
of thefileto be printed:

| p filename
Within syntax statements, brackets enclose optional elements. In

the following example, brackets around [ - ddev] indicate that the
parameter and its delimiter are optional:

| p[-ddev] filename
Within syntax statements, braces indicate that you must choose one
of the listed items. In the following example, the braces around

{-c| - x| - v} indicate, that you must choose one othe the argu-
ments:

tar {-c|-x|-v}



Preface iv

Additional Reading

The following additiona documentation isreferred to in thismanual:

HP-UX (online) Documentation

Referencesof theformser vi ces(4) refertothegiventopicoritem (hereser vi ces)
contained in the indicated section (here 4) of the HP-UX-reference manual. Itisalso
possible to obtain this documentation on-line using the command nman, whereby in
the case of ser vi ces(4) the user should enter the following statement:

man 4 services

SQL/R A.01.00



Contents

1 Read ThisFirst 1
11 Welcome . . . . . 1
12 Requirements . . . . . . o o i e 2
13 IngalationandUpdate . . . . . ... .. .. .. . . ... . 3
14 Listof Files . . . . . .. . . 4
15 Ordering. . . . . .o 4
16 SoftwareSupportContract . . . ... .. ... ... ... ... 5

3 Introduction 6
31 Howtostart SQL/R . . . . . . . . 8

311 HowtoUsetheSQL/REditor . . ... ............... 8

3.12 Loadingof aSampleReportFile. . . ... ... ... ....... 9

3.13 ExecutionoftheExamples . . . ... ... ... ... ....... 10

314 Teminationof SQL/R . . . . . . . . . . . . .. . 11
3.2 Specificationof Instructions . . . . ... ... ... . 12
33 OpeningtheDatabase . . . . . ... ... . ... ... . . . . . ... ... 13
34 Sdectionof dl ltemsfromaTable . . . . .. ................ 14
3.5 Sdection of aSubset of [temsfromaTable . ... ... .......... 15
36 SELECTWIthWHERE . . . ... ... ... .. .. .. .. .. ...... 16
37 SELECTWIthAND . . . . . . . e 17
38 SELECTWIithOR . .. . . .. . . e 18
39 SELECTWithIN . .. .. .. 20
310 SELECT withBETWEEN . . . . ... . ... ... ... . . ... ... 21
3.11 SortingwithORDERBY . . . . . . . .. . ... i 22

SQL/R A.01.00



Contents Vi
312 SELECT withDISTINCT . . . . .. . . . e 24
313 SELECT withStringConstants . . . . . . .. ... ... ... ....... 25
3.14 SELECT witharithmeticexpressions. . . . .. ... ... ... ... ... 26
315 SELECT andFunctions . . . . . . . . . . .. i 27
316 SELECTWithLIKE . . .. .. . . .. . 29
317 SELECT withGROUPBY . . . . . . . . . . e 32
318 GROUPBY WithHAVING . . . . . .. . ... . 32
319 Thenextstep . . . . . . . . e 34

4 Editor 35
41 Keysfortext processing. . . . . . . v v i e e e e 35
42 TheMenuStructure . . . . . . . . . . . o 38
43 ManMenuBar . ... ... ... 39

431 SQL/RStart(f4) . . . .. ... 39
432 Shel(f5) . . . . . 40
433 Info(f6). . . . . . . . . 40
434 ExitProgram(f8) . . . . . . . .. . ... 40
44 FileManagement . . . . . . . . . .. e 42
441 ReadFile . . .. .. . . 42
442 ImportFile . . ... . . . . . 42
443 SaveFile . . .. . . 43
45 TextBlock Management . . . ... ... ... ... ... ......... 45
451 MakBlock . . ... ... 45
452 CopyBlock . . ... ... . 45
453 DdeeBlock . ... ... .. .. 45
454 InsertBlock . . . .. ... . 46
455 SaveBlock . .. ... 46

SQL/R A.01.00



Contents vii

46 SearchandReplace . . . . . . . . . . . . . . . . ... 47
46.1 Search. ... .. .. .. e 48

462 Replace . . . . . . . e 48

463 GlobadReplace . . . . ... ... . ... ... . 49

5 TheUsage of SQL/R 51
51 AnEasylLisofCustomers . . ... ... ... ... ... . . ... ..., 52
511 OpeningtheDatabase . .. ... ..... ... . ... ...... 52

512 Sdecting ltemsfromaTable . . . . ... . ... ... ....... 53

5.1.3 Formatting the Output withoutaFormFile . ... ... ... ... 55

5.14 Formatting the Output withaFormFile . . . ... ... ... ... 62

5.15 Using SQL/R and ParametersfromtheShell . . . ... ... ... 66

5.2 List of CustomersGrouped by SalesVolume. . . . ... ... . ... ... 69
53 Useof MultipleTables . . . . ... ... ... .. ... ... . ...... 75
B4 SUMMANY . . . . e e 84
6 Reference 85
6.1 Statingof SQL/R . . . . . .. 86
6.2 Ddfinitionof Terms . . . . . . . . .. .. 88
6.3 ReservedWords . . . . . .. .. . . . 90
6.4 DaaTypes . . . . o v i e e 91
6.5 Identifiers . . . . ... 93
6.6 Constants . . . . . . . ... 93
6.6.1 NumericCongtants . . . . . ... . . ... ... 93

6.6.2 Character StringCongtants . . . . . .. . .. ... ... ...... 94

663 DaeConstants . . . . . ... .. . ... e 94
6.6.4 TimeConstants . . . . . . . .. . . . i 94

SQL/R A.01.00



Contents viii

6.7 ArithmeticExpressions . . . . . . . ... .. e 95
6.7.1 ArithmeticFunctions . . . . .. ... .. ... . ... ....... 96
6.7.2 DaeFunctions . .. . .. ... ... ... 97
6.8 SHINGEXPressions . . . . . . . .o v i it e e 98
6.8.1 StringFunctions . . .. ... ... ... . . 99
6.9 ConditionFunctions. . . . . . ... ... ... ... 99
6.10 Conditiona EXPressions . . . . . . . . v v it i e e e 100
6.11 TheCLOSE DATABASECommand . . . . . ... ... .. .. ...... 102
6.12 TheCREATEVIEW Command . . . . . .. ... ... .. .. ...... 103
6.13 TheDEFINECommand . . . . . . ... .. ... ... ... 106
6.14 TheEXIT Command . . .. . ... ... . .. ... 107
6.15 TheHELPCommand . . . . . . . . ... .. ... ... . ... 107
6.16 TheFIELD Command . . . . . . . .. . .. . . i 108
6.16.1 FIELD and ExpressonPseudonyms . . . . ... ... ....... 108
6.16.2 TheVALUESARERuUle . . . .. .. ... ... . ... . ..... 109
6.16.3 TheDISPLAY ASRule . . ... .. .. ... .. ... ...... 110
6.17 The OPEN DATABASEcommand . . . . . ... . ... .. ... .. ... 112
6.17.1 MultipleDatabases . . . . . ... ... ... . .. . .. ... 112
6.172 TheQIFFile . .. . .. ... . . . . 112
6.18 TheREPORT Command . . . . . . ... .. ... ... .. ... ... 114
6.18.1 The CALCULATE Ruleand theBREAK ONRule . . .. ... .. 114
6.18.2 OutputDevices . . . . . . . . . . . e 116
6.18.3 Numberof LinesperPage . .. ... ... ... ... ....... 116
6.184 OutputWidth . . . . . ... ... ... . . . .. 116
6.185 OutputFormat . . . . ... ... ... ... ... 117
6.18.6 TheUseof FormFiles . . . ... ... ... ... ... ...... 118
6.19 TheRUNCommand . . .. . ... ... . .. .. ... ... 121

SQL/R A.01.00



Contents iX

6.20 TheSELECT Command . . . . . . .. . .. ... ... 123
6.20.1 TheDISTINCTRuUle . . . . ... ... .. . . .. . 123
6.20.2 TheFROMRule . . . ... ... ... ... ... . .. ...... 123
6.203 TheWHERERule . . ... ... ... ... ... ... ...... 124
6.204 TheGROUPBY Rule . .. ... ... ... ... ... ...... 124
6.205 TheHAVINGRuUle . . . . . ... ... .. . . . ... ... 125
6.206 TheORDERBYRule ... ... .. ... .. .. ... ...... 125

6.21 SETCommands . . . . . . . . o 126
6.21.1 SETDATE . . . . . . 126
6.21.2 SETLENGTH . .. .. ... . . . e 126
6.21.3 SETLOCALE . . . .. .. . . . 126
6.21.4 SETOUTPUT . . . . . . . . e 127
6.21.5 SETPRINTER . . . . . . . . . . e 127
6.21.6 SETWIDTH . . . . .. ... . . e 128

6.22 SHOW Commands . . . . . . . . . . i 129
6.221 SHOWDATE . . . . . . . e 129
6.222 SHOWFIELD . . . .. .. . . . i 129
6.223 SHOWLENGTH . . . . . . . .. e 129
6.224 SHOWLOCALE . . . . .. . .. .. . 130
6.225 SHOWMACRO . . . . .. . . i 130
6.226 SHOWOUTPUT . . . . . . . . it 130
6.22.7 SHOWPRINTER . .. ... .. . . . . . . 130
6.228 SHOWVIEW . . . .. . .. e 131
6.229 SHOWWIDTH. . . . . ... ... e 132

A Quick Reference Guide 133

SQL/R A.01.00



Contents

B Dateand Time Formats

C Differences between SQL/R and standard SQL
D Work Environment

E HP Eloquence Format Numbers

F Glossary

SQL/R A.01.00

136

139

140

144

146



Read This First

1.1 Welcome

Welcome to SQL REPORT (SQL/R), the Report Generator for HP ELOQUENCE.

SQL /R isan extension of HP ELOQUENCE that allowsyou to create reportsand formatted
listings without being restricted to simple calculations.

The following list shows some main features of SQL/R.

o simultaneous access to different databases

support of index items

e searching for and sorting on all kinds of items

using alanguage related to SQL standards

calculated items

support of format definition files



1.2 Requirements

1.2 Requirements

Prerequisites to successfully use SQL/R are;

o HP 9000 Series 800

e HP-UX Release 7.0 or later

¢ HP ELOQUENCE Version A.03.10 or later

o about 2 MB free disk space in the filesystem /usr
e DDStapedrive (1.3 GB)

SQL/R isavailableintwo versions:

1. Anevaluation copy that can be used for one month.

If you decide to purchase aperpetua license, you will receive a password a ong with
the license that changes the evaluation copy to atimely unlimited version.

2. A perpetual version that can only be used with the computer for which it was ordered.

Both versions come with the same materia and do not differ in functionality.

The product is shipped on 60m DDS Cassette (1.3 GB) in tar format. Other media are
available on request. Please contact your sales representative.

SQL/R A.01.00



Read This First

1.3 Installation and Update

This section describes how toinstall SQL/R. A list of al filestogether with a brief descrip-
tion can be found in the next section.

Prerequisites for installation:

o Thepassword fromyour softwarelicensesheet toinstall aperpetua versionof SQL/R

o HP-UX superuser (root) login

1. logonasr oot intoyour system.
2. insert the DDS Cassette containing SQL /R software.

3. change into the directory /tmp by typing this command:
cd /tnp

4. execute the following tar command:
tar -xv

5. change into the directory /tmp/sglr by typing this command:
cd sqlr

6. start theinstalation utility by typing this command.
./install

Theinstallation utility displaysfurther instructions.

SQL/R A.01.00



1.4 List of Files

1.4 List of Files

SQL /R software consists of the following files:

File/ Path Description
Directory
sqlr Jusr/bin/ SQL/R main program
sglred Jusr/bin/ SQL /R editor
sglrexec Jusr/bin/ SQL /R execution modul
install Jusr/sqlr/ installation utility
installg Jusr/sqlr/ german installation utility
installe Jusr/sqlr/ englishingtallation utility
sglrbrand Jusr/sqlr/ subprogram for installation
Clsglr.cat Jusr/lib/nls/ | message catal og (default)
german/sglr.cat | /usr/lib/nlg | message catal og (german)
db.g/ Jusr/sqlr/ directory with (german) sample database
sample.g/ Jusr/sqlr/ directory with (german) examples
db.e/ Jusr/sqlr/ directory with (english) sample database
sample.e/ Jusr/sqlr/ directory with (english) examples
1.5 Ordering

If you decideto purchase aperpetual licensefor SQL/R, you will receive a password along
with thelicense sheet that allows you to change the eval uation copy into version. The price
of the evaluation copy will be credited to the perpetual license.

To process your order, we need the serial number (aso referred as SID - software ID ) of
your computer. To display your SID please type the following HP-UX command:

unane -i

SQL/R A.01.00



Read This First

1.6 Software Support Contract

We also offer a software support contract for SQL/R. Please contact your sales representa-
tive.

The support contract grants you access to our hotline, free-of-charge patches and bug fixes.
You will be offered new releases under specia update conditions.

SQL/R A.01.00



3

Introduction

This chapter will give a brief overview of the SQL/R functionality and usage. It is
recommended for novice and new users. Theway SQL /R worksin general isdemonstrated
by using these examples.

These examples are based on the table CUSTOMERS of the sample database. CUS
TOMERS contains the following items:

Item Description ‘ Data type ‘
CUSTNO Customer number STRING[ 6]
MATCHCODE | Search criteria STRING[10]
NAME1L Customer name STRING[32]
NAME2 STRING[32]
NAME3 STRING[32]
STREET Street / Postbox STRING[32]
ZIPCITY ZIP Code and City STRING[32]
PHONE Phone number STRING[ 18]
TURNOVER Turnover (month, year, prev.year) | REAL(3)!
SALESAREA | Sdesarea STRING[ 6]

All examples used in this chapter can be found in directory / usr/ sql r/ sanpl e. The
corresponding filename is printed in the right margin of apage and startswiththetermt ut
followed by a number.

The sample databaseisstored in/ usr/ sql r/ db directory and is named DB.

Toexecutetheexamplest ut xx, itisnecessary to changetothedirectory/ usr/ sql r/ sanpl e
by using the following HP-UX command:

litem TURNOVER is an array with the following 3 elements:

- current month ( month-to-date): turnover[0]
- current year ( year-yo-date): turnover[1]
- previousyear: turnover[2]

An array element is always accessed with the help of an index. Please note that the index count starts with 0,
i.e. you retrieve the n-th element by specifying anindex value of n-1.



Introduction

cd /usr/sqlr/sanple

SQL/R A.01.00



3.1 How to start SQL/R

3.1 How to start SQL/R

You can start SQL/R by typing the following
sqlr [fil enane]

at the HP-UX shell prompt. If you specify afilename (e.g. t ut 02) along with the above
command, the file contents will be loaded immediately.

All messages of the editor utility and the labels of the function keys depend on the value
of LANG environment variable. The text shown here assumes the variable to be set to
LANG=aner i can (— Appendix D).

3.1.1 How to Use the SQL/R Editor

Entering thesqgl r command calls the SQL /R editor. This chapter describes the functions
of SQL/R and shows you how to try a few examples. For more detailed description on
SQL /R editor, see chapter 4 “Editor”.

All input isentered at the current cursor position. If thetext to be entered islonger than the
screen display, thelinewill beshifted | eft asyou enter moretext. Ani nverse[| exclamation
mark appears asthelast character in theright margin of theline, if theremainder of theline
is outside the current display.

The following keys can be used to move the cursor on the screen and also modify the
displayed text:

Move cursor one character to theright. If used at theend of aline, the
cursor moves to the beginning of the next line.
Move cursor one character to the left. If used at the beginning of a

line, the cursor moves to the end of the previousline.

Move the cursor up one line until it reaches thefirst line.

Move the cursor down one lineuntil it reaches the last line.

>

> & &

SQL/R A.01.00

CTRL A. Move cursor to thefirst position of the current line.



Introduction

CLR LINE

BREAK

Illnn

CTRL E. Move cursor one position beyond the last character of the
current line,

RETURN movesthe cursor to thefirst position of thenext line. If RE-
TURN is used before the last character, the remainder of the sentence
ismoved down to the next line at thefirst position.

BACKSPACE. Erase character before current cursor position. If the
cursor is at the beginning of aline, this line will be attached to the
previous one.

Delete character at the current cursor position and shift the remainder
of the sentence one character to the left. If the cursor is at the end of
aline, the next line will be attached to the current line'send.

Thelineis erased from the current cursor position to the end of the
line. If the cursor is at the first character position the entire line is
deleted. If the cursor is at the end of the line, the next line will be
appended to thisline.

The current activity or program will be aborted. The user will be
prompted before the activity or program aborts.

CTRL L. The screen display isrefreshed.

CTRL W. Thedisplay widthistoggled between 80 and 132 characters
per line. Thisfeatureis supported for termina types 700/92, 700/94,
700/96 and 700/98.

3.1.2 Loading of a Sample Report File

To display the file function keys, press

fl
FILE

To load atext file, press

4
READ
FILE

SQL/R A.01.00



3.1 How to start SQL/R 10

If there istext currently in the editor work space that was changed, the message appears:
[...] bhas been nodified. Save text ? (y/n)
During the exercises with the examples it is not necessary to save thefiles. Therefore enter

for No when the above question appears.

Then the next text file can be retrieved. The following prompt appears:
Enter fil enane:

Enter the name of thefile to beretrieved (e.g. t ut 02).

To return the the main menu, press

f8
MAIN
MENU

3.1.3 Execution of the Examples

SQL/R is not case sensitive, i.e. it does not differentiate between lower case letters and
upper case letters. Therefore it is not necessary to enter the examples in the case printed in
the manual. For your convenience and for better readability of the examples, however, you
will find all wordsthat are part of the SQL /R languagein upper case letters. Item and table
names consist of lower case | etters.

Instructions can be split across lines and should be terminated with a semicolon (; ). To
enclose strings you can use single as well as double quotes; however, the string must begin
and end with the same type of quote mark.

After entering one of the following examples, you can start execution by hitting function
key:

4
SQLR
Start

During execution of the instructionsthe following message appears:
wor ki ng ...

SQL/R A.01.00



Introduction

11

The results are displayed and can be reviewed. If the number of lines exceeds one screen
display, the last linewill say:

-- press <return> to continue or q <return>to quit:

To view the next page of the results, press the RETURN key:

To terminate the display of results and return to the editor, press the following two keysin
sequence:

@ and (=)

When you are back in the editor, you can work on additiona examples in the introduction.

3.1.4 Termination of SQL/R

To terminate your SQL /R session, press function key:
EXIT
The following message appears directly above the function key menu:

[...] bhas been nodified. Save text ? (y/n)

When practicing with the examples, it is not necessary to save your changes, so enter
for no when prompted with this question.

SQL/R A.01.00



3.2 Specification of Instructions 12

3.2 Specification of Instructions

SQL /R contains keywords that are used in connection with item and table names to build
up command statements.

Here are some of the keywordsintroduced in this chapter:

SELECT selects the itemsto be retrieved.
An asterisk indicatesthat all items
in atable are to beretrieved.

FROM specifies the ’source’ of theitems

WHERE specifies the selection conditions

ORDER BY definesthe sort order

GROUP BY groupsdatafor further processing

The SELECT instructionisthe most important command of SQL/R. It can be used to access
all data of a database.

The syntax of the select command is shown here:

SEL ECT what FROVisource WHERE condition

what alist of itemsor formulas
source the name of atable containing the data
condition dataselection criteria

The following example displays the items custno and namel from the table customers if
the item matchcode is equal to “KELLER”. Note that you may use items within selection
condition that aren’t displayed as results (in our example: matchcode).

SELECT custno, namel
FROM customers
WHERE matchcode = "KELLER";

SQL/R A.01.00



Introduction 13

The search results consist of a header line followed by the relevant datalines:

NAME1 |«—header line
133007 KELLER, ERNST _~~~~~ ~~  i<—result (data) line
123062 Keller, Thne & Tesch KG

0SKAR KELLER
column (item)

3.3 Opening the Database

Beforeyou can accessadatabase, youmust openit. ThisisdonewiththeOPEN DATABASE
command.

The sample database used hereiscalled db. In addition to specifying the name, it is also
necessary to aso specify the path name of the directory where the database resides.

Starting from directory / usr/ sql r/ sanpl e the database can either be accessed by its
relativepathand name: . . / db/ db, or withitsabsolutepathand name: / usr/ sql r/ db.
Therefore your first command should be:

OPEN DATABASE "../db/db";

The name and path of the database is dways specified within quotes.

SQL/R A.01.00



3.4 Selection of all Items from a Table

14

3.4 Selection of all ltems from a Table

Input:

OPEN DATABASE "../db/db";

SELECT * FROM customers;

Result:

CUSTNO MATCHCODE NAME1

21101
31003
13002

15046
17054

RAUT
1AFIO0S
29037

ZUMTOB
ZOLZER

TRAUTWEIN HERNE GMBH & CO
WAFIOS MASCHINENFABRIK
SIEMENS AG

ZUMTOBEL GMBH
HZV-SPORT, HORST ZOLZER

tut02

NAME2

ABT. ZFELB 23

LICHT

Inthe example, the* (asterisk) specifiesthat adl itemsinthetable“customers’ are selected.
The FROM specifies which dataset (of the database) or table contains the data. The result
of the above commands is alist of al data entries ( records ) of the table customers with
all theitems of each record. (The result example listed here is only a subset and does not
contain all the columns and rows).

SQL/R A.01.00



Introduction

15

3.5 Selection of a Subset of Iltems from a Table

Input:

OPEN DATABASE "../db/db";

SELECT custno, namel, name2 FROM customers; s
Result:

CUSTNO NAME1 NAME?2

21101 TRAUTWEIN HERNE GMBH & CO

31003 WAFIOS MASCHINENFABRIK

13002 SIEMENS AG ABT. ZFELB 23

15046 ZUMTOBEL GMBH LICHT

17054  HZV-SPORT, HORST ZOLZER

In this example, only the CUSTNO, NAME1, and NAMEZ2 of each record are displayed.
The subset of itemsis defined by listing the items, separated by commas in the SELECT

command.

SQL/R A.01.00



3.6 SELECT with WHERE 16

3.6 SELECT with WHERE

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, namel

FROM customers

WHERE matchcode = "KELLER"; o4

Result:

CUSTNO MATCHCODE
33007 KELLER
23062  KELLER
11036  KELLER

NAME1

KELLER, ERNST

Keller, Thne & Tesch KG
OSKAR KELLER

Now we will use the SELECT ... WHERE command. This alows you to retrieve only
those data records that satisfy a given condition ( in the above example: matchcode equals
“KELLER” ). The condition may contain boolean operators such as AND, OR, NOT; rela
tional operatorssuchas=, <, <=, >, >=, <> and language specific operatorssuch as (L1 KE,

I N, BETVEEEN).

The following examples will the usage of these complex conditions.

String values must be enclosed in quotes. Numeric vaues for calculations, as well as date
and time values do not use quotes !

SQL/R A.01.00



Introduction

17

3.7 SELECT with AND

Input:
OPEN DATABASE "../db/db";

SELECT custno, matchcode, namel, name?2
FROM customers

WHERE custno > "11000" AND custno <« '"12000"; o5
Result:

CUSTNO MATCHCODE NAME1 NAME?2

11001 GROZ-B GROZ-BECKERT NADELFABRIKEN

11002 ESJOT ESJOT SCHUHTECHNIK

11044  WERKST WZB WERKSTATT FUR BEHINDERTE

11045 WESTLA Westland Gummiwerke GmbH & Co

This exampl e shows the sdl ection of two combined conditionswith the keyword AND. Only
those data records are sel ected where customer number is greater than 11000 and issmaller
than 12000.

SQL/R A.01.00



3.8 SELECT with OR

3.8 SELECT with OR

Input:
OPEN DATABASE "../db/db";
SELECT custno, matchcode, zipcity

FROM customers
WHERE (matchcode = "KELLER" OR matchcode = "FICHTE") AND zipcity > "73"; twos

Result:

CUSTNO MATCHCODE ZIPCITY

38004 FICHTE 8646 Nordhalben
29030 FICHTE 8641 Marktrodach
32006  FICHTE 8626 Michelau
33007 KELLER 7300 ESSLINGEN

In the next example, we use the boolean operator OR in addition to the operator AND.
The records retrieved contain a matchcode value of either “KELLER” or “FICHTE” and a
Zip code value greater than “73”. The parentheses change the sequence of evaluating the
conditions. It isvery important to correctly use parentheses to obtain the desired results.
Changing the location of the parentheses can change the results.

Now enter the following instructions:

OPEN DATABASE "../db/db";
SELECT custno, matchcode, zipcity
FROM customers

WHERE matchcode = "KELLER" OR matchcode = "FICHTE" AND zipcity > "73";

tuto7

Theresults are identical to those retrieved using these commands:

OPEN DATABASE "../db/db";
SELECT custno, matchcode, zipcity

FROM customers
WHERE matchcode = "KELLER" OR (matchcode = "FICHTE" AND zipcity > "73");

SQL/R A.01.00



Introduction

19

Result:

CUSTNO MATCHCODE ZIPCITY

38004 FICHTE 8646 Nordhalben

29030 FICHTE 8641 Marktrodach

32006  FICHTE 8626 Michelau

33007 KELLER 7300 ESSLINGEN

23062  KELLER 7297 ALPIRSBACH

11036  KELLER 7293 PFALZGRAFENWEILER

This example listsall data recordswith either
matchcode = “KELLER”

or
matchcode = “FICHTE" and zipcity > “73".

The condition zipcity > “73" is only relevant for those data records that have a matchcode
value equa “FICHTE”.

SQL/R A.01.00



3.9 SELECT with IN 20

3.9 SELECT with IN

Input:
OPEN DATABASE "../db/db";
SELECT custno, matchcode, zipcity

FROM customers
WHERE matchcode IN ("KELLER", "FICHTE", "KLOCKN"); twtos

Result:

CUSTNO MATCHCODE ZIPCITY

33007 KELLER 7300 ESSLINGEN
23062  KELLER 7297 ALPIRSBACH
11036  KELLER 7293 PFALZGRAFENWEILER
38004 FICHTE 8646 Nordhalben
29030  FICHTE 8641 Marktrodach
32006 FICHTE 8626 Michelau
22032  KLOCKN 7200 TUTTLINGEN
16037  KLOCKN 7200 TUTTLINGEN
22020  KLOCKN 7186 BLAUFELDEN
23065  KLOCKN 7186 BLAUFELDEN
17046  KLOCKN 7156 WUSTENROT 1
11038  KLOCKN 7151 AFFALTERBACH
22033  KLOCKN 7141 Benningen

The keyword | Nisused to search for datarecordswith alist of possible values. Thevalues
are separated with acomma and thelistisenclosed in parentheses. Thel N operator can be
used is most cases as a replacement for the OR operator.

Therefore the instuctions shown above can also be written as shown here:
OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity
FROM customers
WHERE matchcode = "KELLER" OR matchcode = "FICHTE" OR matchcode = ”KLﬁCKN”;

SQL/R A.01.00



Introduction

21

3.10 SELECT with BETWEEN

Input:
OPEN DATABASE "../db/db";
SELECT custno, matchcode, zipcity

FROM customers
WHERE zipcity BETWEEN "7000" AND "7100"; w10

Result:

CUSTNO MATCHCODE ZIPCITY

21004  KOPEMA 7090 ELLWANGEN/JAGST
17007  KORALL 7080 AALEN

26009 KASBOH 7000 STUTTGART 10
24009  KOLLI 7000 STUTTGART 1

BETWEEN val1 AND val2 is used for searching within a given range of values. The two
values vall and val2 are part of the range.

SQL/R A.01.00



3.11 Sorting with ORDER BY

22

3.11 Sorting with ORDER BY

Up to now we have only selected data records. The retrieved data has been displayed in the
same sequence as found in the table ( data set ). Normally, you would format the results
using the ORDER BY command. For example:

Input:
OPEN DATABASE "../db/db";
SELECT custno, matchcode, zipcity
FROM customers

WHERE zipcity BETWEEN "7200" AND "7300"
ORDER BY matchcode, zipcity; il

Result:

CUSTNO MATCHCODE ZIPCITY

11036  KELLER 7293 PFALZGRAFENWEILER
23062  KELLER 7297 ALPIRSBACH
22032  KLOCKN 7200 TUTTLINGEN
16037  KLOCKN 7200 TUTTLINGEN

This example uses the items matchcode and zipcity for sorting. Multiple level sorts are
possible by specifying several itemsfor the sort. The position of theitem withinthe ORDER
BY command determines the sequence for the sort. The results are sorted by the order in
which the sort items are listed ( i.e. the first item defines the primary sort, etc ). In the
example, matchcode is the primary value. For identical values of matchcode, the zipcity
value is used as the secondary sort value.

The keywords ASC and DESC define whether the data should be sorted in ascending or
descending order. Ascending isthe default, i.e. if no additiona keyword is used then ASC
is assumed. The following example uses a descending order. Note that instead of an item
name, it uses the column number to specify the sort criteria.

Input:

SQL/R A.01.00



Introduction

23

OPEN DATABASE "../db/db";

SELECT custno, matchcode, turnover[1]
FROM customers

WHERE zipcity BETWEEN "7200" AND "7300" AND turnover[1] > O
ORDER BY 3 DESC;

tutlla

Result:
CUSTNO MATCHCODE TURNOVER[1]
26039 KIERCH 98602.02
17040 KEWEST 95550. 39
20012 KLAFFEI 4667.70

The result was sorted by turnover[ 1] in descending order. The“3" specifies that the values
of the third item of the SELECT command turnover are used for the sort order.

SQL/R A.01.00



3.12 SELECT with DISTINCT

24

3.12 SELECT with DISTINCT

The DI STI NCT condition is used in connection with the SELECT command to retrieve
only those items with a unique value. If avaue occurs more than once in the table, only
the first occurence will be listed.

Input:
OPEN DATABASE "../db/db";
SELECT DISTINCT zipcity
FROM customers

WHERE zipcity > "7000" AND zipcity < "7100"
ORDER BY zipcity; w12

Result:
ZIPCITY

7000 STUTTGART 1
7000 STUTTGART 10

7080 AALEN
7090 ELLWANGEN/JAGST

The above example shows how the use of the DI STI NCT option suppressed all records
with the same value for item zipcity.

SQL/R A.01.00



Introduction

25

3.13 SELECT with String Constants

Input:
OPEN DATABASE "../db/db";

SELECT "Customer:", custno, "Name:", namel

FROM customers

WHERE custno < '"11010"

ORDER BY custno; w13

Result:

"Customer:" CUSTNO "Name:" NAME1
Customer: 100 Name: SCHAFFER
Customer: 11001 Name: GROZ-BECKERT

Customer: 11008 Name: SOCIETE
Customer: 11009 Name: G. NOLL

The use of stringsin thelist of items to be selected allows us to define fixed text partitions

that appear in the output. Each text partition consists of the string and the item. The text
partitions are displaysin the order listed in the SELECT command.

SQL/R A.01.00



3.14 SELECT with arithmetic expressions

26

3.14 SELECT with arithmetic expressions

Input:

OPEN DATABASE "../db/db";

SELECT
custno, turnover[0], turnover[1],
(turnover [0]1%100) /turnover[1] "percentage"
FROM customers
WHERE turnover[0] > 0 AND turnover[1] > 0
ORDER BY custno; 4

Result:

CUSTNO TURNOVER[0] TURNOVER[1] percentage

11001 4058.98 18976.81 21.39
11002 7024.89 85839.26 8.18
HOPPE 8401.20 67719.07 12.41
MONT 6196.23 65231.63 9.50

Arithmetic operators (+, -, *, /) can be used to calculate item values for retrieved data
records as well as construct new items. However, al these caculations exist only in the
report. All datain the database remains unchanged.

In the example, only those records where turnover[ 1] is greater than zero were selected.
Thiswas specified by using the WHERE condition. These records were selected to avoid an
error caused by dividinga number by zero.

SQL/R A.01.00



Introduction

27

3.15 SELECT and Functions

Input:
OPEN DATABASE "../db/db";

SELECT COUNT (*) FROM customers; twis

Result:

COUNT (*)
1177

There are 5 arithmetic functionsavailable: COUNT, SUM AVG, MAX and M N. All functions
have an item name as an argument which will be applied to this parameter. The COUNT
functionisthe only arithmetic function that allows an asterisk (* ) instead of an item name.
The asterisk (*) instructs SQL /R to count all the recordsin the table (dataset).

Input:
OPEN DATABASE "../db/db";
SELECT AVG (turnover[0]), AVG (turnover[1]/12)

FROM customers
WHERE turnover[0] > 0; twis

Result:

AVG (TURNOVER[0]) AVG (TURNOVER[11/12)
4986.98 4265.98

This example shows how to calcul ate the average value for the items turnover[ 0] ( month-
to-date) and turnover[1]/12 ( year-to-date).

SQL/R A.01.00



3.15 SELECT and Functions

28

Input:
OPEN DATABASE "../db/db";
SELECT SUM(turnover[0]), SUM(turnover[1]/12)

FROM customers
WHERE turnover[0] > 0; w7

Result:

SUM (TURNOVER[0]) SUM(TURNOVER[11/12)
2937330.82 2512659.58

This example shows how to calculate the tota for the items turnover[0] ( month-to-date)
and turnover[ 1]/12 ( year-to-date ).

Input:
OPEN DATABASE "../db/db";

SELECT COUNT(DISTINCT matchcode) FROM customers; twis

Result:

COUNT (DISTINCT MATCHCODE)
1012

In thisfinal example, we are using the COUNT and DI STI NCT conditionsto cal cul ate the
number of unique values for matchcode. Without the DI STI NCT condition within the
instruction, each value is counted and the result is identical to the total number of records
in thetable.

SQL/R A.01.00



Introduction

29

3.16 SELECT with LIKE

Input:
OPEN DATABASE "../db/db";
SELECT custno, matchcode, zipcity
FROM customers

WHERE matchcode LIKE "KELLER"
ORDER BY custno; w19

Result:

CUSTNO MATCHCODE ZIPCITY

11036  KELLER 7293 PFALZGRAFENWEILER
23062  KELLER 7297 ALPIRSBACH
33007 KELLER 7300 ESSLINGEN

The operator LI KE allows you to specify a character pattern to use for comparision with
string items. The simplest patternisastring without wildcards ( see example above ). Each
question mark (?) represents a single character and an asterisk (*) can represent either no
characters or a combination of characters.

Input:
OPEN DATABASE "../db/db";
SELECT custno, matchcode, zipcity
FROM customers

WHERE zipcity LIKE "7000%"
ORDER BY custno; w21

SQL/R A.01.00



3.16 SELECT with LIKE

30

Result:

CUSTNO
17004
24009
26009
29007
30008
32008
35006

MATCHCODE
KUNSTO
KOLLI
KASBOH
KUNSTS
KUTZNE
KUTSCH
KUNSTS

ZIPCITY

7000
7000
7000
7000
7000
7000
7000

Stuttgart-Zuffenhausen
STUTTGART 1

STUTTGART 10

Stuttgart 1

STUTTGART 80

STUTTGART 80

Stuttgart 1

This example showes how to extract all datarecords where the value for zpcity starts with

“7000".
Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers
WHERE zipcity LIKE "7700%"
ORDER BY zipcity;

Result:

CUSTNO
24009
26009

11005
14011

MATCHCODE
KOLLI
KASBOH

HERBER
HERAEU

tut22

ZIPCITY

7000
7000

7900
7900

STUTTGART 1
STUTTGART 10

ULM/DONAU
Ulm

This example retrieves all customer records where the value for zipcityis as follows:

e The 1st character isa“7

o the second character is any single character

o thethird and fourth characters are “0”

SQL/R A.01.00



Introduction

« followed by a combination of any characters (or no characters)

The L1 KE condition can also be used to define a string of characters within or at the end of
an item:

Input:
OPEN DATABASE "../db/db";
SELECT custno, matchcode, zipcity

FROM customers
WHERE zipcity LIKE "*80"; tu22a

Result:

CUSTNO MATCHCODE ZIPCITY

13018  GEYER 8500 Niirnberg 80
32026  HAPS 8000 MUNCHEN 80
32008  KUTSCH 7000 STUTTGART 80
30008  KUTZNE 7000 STUTTGART 80
23073  WICKE 2000 Hamburg 80

The example above sel ects only those customer recordswith an itemvaluefor zipcity ending
with “80".

SQL/R A.01.00



3.17 SELECT with GROUP BY

32

3.17 SELECT with GROUP BY

Input:
OPEN DATABASE "../db/db";

SELECT salesarea, SUM(turnover[0])

FROM customers

WHERE salesarea BETWEEN "O" AND "9"

GROUP BY salesarea; w23

Result:

SALESAREA SUM(TURNOVER[O0])

8864.09
53252.06
182403.50
75383.51
262745.05
524570.07
455429.99
497460.46
378855.36

1065.71

© 0 N0 RWw N = O

The option GROUP BY consolidates data records with identical values for a specified item
intoasingleresult line. Thevauesof al other items should be combined using the numeric
functions, because each item in the consolidated result line can only hold one value.

The above SELECT ... WHERE statement retrieves al records of the table customers that
have a salesarea value of between “0" and “9”. The GROUP BY option then consolidates
the data records by salesarea. We use the SUMfunction for the item turnover[ O] ( month-
to-date turnover ) to calculate a group total for each salesarea. This way each value for
salesarea shows up only once and the values of item turnover[0] are totaled.

3.18 GROUP BY with HAVING

The HAVI NG option can be compared with the keyword WHERE, because it is used in a
similar way: specifically to extract only those consolidated result lines that fulfill a given

SQL/R A.01.00



Introduction

33

condition. The HAVI NGinstruction is processed after execution of the GROUP BY rule

and appliesto the GROUP BY results.

Input:

OPEN DATABASE "../db/db";

SELECT salesarea, SUM(turnover[0])

FROM customers

WHERE salesarea BETWEEN "O"

GROUP BY salesarea

HAVING SUM (turnover[0]) > 100000;

Result:

SALESAREA SUM(TURNOVER[O0])

R N O TGN

The HAVI NGinstruction suppresses all of thoseresult lines (groups) that do not satisfy the
condition (SUM (turnover[1]) > 100000). For this condition we can use the same operators
and expressions as for conditions using the WHERE option.

You can compare the output of thisexample with the output of the previous example, which

used the WHERE condition.

SQL/R A.01.00

182403.
262745.
524570.
455429.
497460.
378855.

50
05
07
99
46
36



3.19 The next step

The HAVI NG option works like a additiona filter on the results:

‘ datarecords ‘

L

filter: WHERE

L

build groups

L

filter: HAVING

l

sort

|

results (output)

3.19 The next step

We are now at the end of our short introductionto SQL/R. You can use the sampl e database
for further exercises, e.g. to explore the SQL/R optionsin more detail as described in the
reference part of thismanual.

Asyou cannot modify datain a database but only read datawith SQL/R, you can apply the
examples of thisintroduction easily and without risk to your own databases. It will help
you gain more experience with your first SQL/R reports.

In chapter 5 you will find some step-by-step instructions on how to develop your own
reports.

SQL/R A.01.00



A

Editor

This chapter describes how to use the SQL/R editor. To start the SQL/R editor, type this
command at the HP-UX shell prompt:

sqlr

If you specify a file name along with the command, this file will immediately be loaded
into the editor.

After you enter the SQL/R command you are in the SQL/R editor environment. You can
now select a function key to continue. Within the editor you can aso enter instructions,
execute them, and create QRF files ( refer to RUN command ) and form files ( refer to
REPORT command ).

All input isinserted at the current cursor position. If the text to be entered is longer than
the screen width, then the lineis moved to theleft. If the end of lineisnot visiblefrom the
current position, an inverse E isdisplayed in the right margin of theline.

4.1 Keys for text processing

The following keys can be used for cursor movement and text processing, e.g. deletion of
characters, words or lines:

moves the cursor one positionto theright. If the cursorr isat theend
of theline, the cursor is moved to thefirst position of the next line.

moves the cursor one position to the left. If the cursor is a the
beginning of the line, the cursor is moved to the last position of the
previousline,

moves the cursor up oneline. If thecursor itisaready at thetop line,
the cursor stays in the same position. If the previous line is shorter
than the current cursor position, the cursor is moved to the end of that
line.



4.1 Keys for text processing

36

=

]

i

INS LINE

DEL LINE

INS CHAR

DEL CHAR

CLR LINE

g HEEE [ o

BREAK

SQL/R A.01.00

moves the cursor down oneline. If the cursor it isaready on the last
ling, the cursor staysin the same position. If the next lineis shorter
than the current cursor position, the cursor is moved to the end of that
line.

HOME: moves the cursor to the beginning of thefirst line.

SHIFT HOME: movesthecursor one position behind thelast character
of thelast line.

CTRL-A: moves the cursor to the beginning of the current line.

CTRL-E: moves the cursor to the next position after the end of line.

RETURN: insertsanew line and moves the cursor to thefirst position
of thenew line. If thecursor was at the end of linewhenthe RETURN
key was used, an empty lineisinserted, otherwisethetext will be split
into two lines at the current cursor position.

BACKSPACE. The character onepositionto theleft | eft of the current
cursor position is deleted. If the cursor is at the beginning of aline,
thisline is appended to the previousline.

INS LINE: deletes the word | eft to the current cursor position. If the
cursor isat the beginning of theline, the deletion will be done/ con-
tinued in the previousline. The cursor position changes accordingly.

DEL LINE: deletes the word from the current cursor position. If the
end of line has been reached, then the following lineis appended.

inserts a newline at the current cursor position. The cursor does not
move.

deletes character at the cursor position. If the cursor is at the end of
theline, the next line will be concatenated to thisline.

thelineis deleted from the cursor position to the end of theline. To
delete the entire line, position the cursor at the beginning of the line

and pressCLR LINE]. If the cursor is at the end of theline, the next

linewill be concatenated to thisline.

interrupts the process or program. A confirmation question is dis-
played before the program is aborted.



Editor

37

ESC

SQL/R A.01.00

Press( ESC | and anumber (n) to repeat the next command or keystroke
n number of times.

the following control character will be inserted into the text. Control
characters are displayed in inverse mode. Thisis useful for sending
some special control characters to your printer for printing form files.

anumber (n) followed by CTRL-G movesthecursor tothelinen. The
column position remains the same unlessthe current lineis shorter. If
the current line is shorter, the cursor will be positioned at the end of
thelinen.

CTRL L refreshesthe display.

Togglesthe screen configuration between 80 characters and 132 char-
actersper line. Thisiscurrently supported withthefollowingterminal
types. 700/92, 700/94, 700/96 and 700/98.



4.2 The Menu Structure

4.2 The Menu Structure

FILE BLOCK SEARCH SQL/R Shell Info EXIT
MGMNT Start
FOR- BACK- REPLACE GLOBAL MAIN
WARD WARD REPLACE MENU
Block COPY DELETE INSERT SAVE MAIN
TEXT BLOCK BLOCK BLOCK BLOCK MENU
SAVE SAVE READ IMPORT MAIN
FILE AS... FILE FILE MENU

Main menu function keys through each display a submenu containing specific
commands. The function key displays file management commands, the function
key displays text block commands and the function key displays text search/replace
commands.

Pressing the function key from any submenu returns you to the main menu.

Screen messages and function key labels are controlled by the LANGvariable selected. The
exampl es given assume the LANG=aner i can configuration. (— Appendix D).

SQL/R A.01.00



Editor

39

4.3 Main Menu Bar

Main menu function keys through each display a submenu containing specific
commands. The function key displays file management commands, the function

key displays text block commands and the function key displays text search/replace
commands.

4.3.1 SQL/R Start (f4)

Function key starts processing the currently loaded or created commands. During
processing the following message is displayed:

Request is being processed ...

The process results are then displayed and you can review these. If the results are longer
than screen length, the message will be displayed as the last line on the screen:

-- press <return> to continue or qg<return>to quit:
Press return to view the next screen.

To return to the text editor, press the following keys:

[@)and (=)

SQL/R A.01.00



4.3 Main Menu Bar

40

4.3.2 Shell (f5)

To access the HP-UX shell while in Editor, press the function key.The following
message will appear:

To return to the editor, type exit <return>

To return to the editor, type:
exit
4.3.3 Info (f6)

To display the information bar, press the function key: The information bar above the
function keys will display:

o filename

file access (read only, read/write)

number of linesinfile

number of charactersinfile

e number of characters in the marked text block

¢ line number of cursor position

The information bar remains on the screen until any key is pressed. In addition to this
callableinformation bar, all text changesinvolving more than oneline of the text will result
in a short message being displayed on the screen.

4.3.4 EXxit Program (f8)

To exit SQL/R, pressthe function key.
If you have modified an existing file, the following message appears:

[ filename] was nodified. Save changes (y/n) ?

SQL/R A.01.00



Editor

41

Press(y ] to save the changes.

Press( n]to exit without saving the changes. The existing file remains unchanged.

If thefileisanew file, the following message is displayed:

[menmory] was nodified. Save changes (y/n) ?
If you press , the following message appears.

Pl ease enter fil enane:
Enter afilename and press RETURN:

to save thefileand exit SQL/R.

SQL/R A.01.00



4.4 File Management

42

4.4 File Management

The menu bar displaysthe commands for |oading and saving text and files. When prompted
to enter afilename, enter the filename and press the RETURN key begin processing that

file. Pressing thef 8 | MAI N MENU | function key displaysthe main menu bar.
Press the key to abort the execution.

441 Read File
To load atext file, press
4
If the text file was modified, the foll owing message appears:
[...] was nodified. Save changes (y/n)?

Within the brackets appears either the filename (existing file) or "memory" (new file). The
name of the new file appears only after thefile has been saved with thisfilename. Then the
following message appears.

Read fil e:

Enter thefile name. After thefileisloaded, the following message appears:
Read: [/ nfotext

The information block displays the filename, number of lines and characters read, and the
line number of the cursor position.

4.4.2 Import File
In addition to loading and reading afile, it is aso possible to import afile into the current

text file. To import afile, position the cursor where the new file should be inserted and
press.

SQL/R A.01.00



Editor

43

f5(Ilnport File

The message appears.

| mport File:

Enter thefilename of thefileto beimported. Theimport fileisthen read and inserted at the
cursor position. In addition, a message is displayed with the number of linesinserted.

4.4.3 Save File

To save afile, press:

f1[Save FiTe

If thisisanew file, the following message appears:
Pl ease enter filenane:

Enter afile name and press RETURN. The following message appears:
Saved: I nfotext

The information block contains the filename, number of lines and characters, and theline
number of the cursor position.

If thefileisan existing file, thefileissaved immediately. If theexisting filewasnot modified,
no save is necessary and thedie Sicherung ohne zusétzliche Eingaben durchgefuthrt. Wurde
die following message appears.

Save not needed

To save an exigting file using a different name press
f2[Save as]

The following message appears.

SQL/R A.01.00



4.4 File Management

44

Save as:

Enter the new filename and press RETURN. The information bar will now display the new
filename.

SQL/R A.01.00



Editor

45

4.5 Text Block Management

The commands discussed so far modify individual charactersandlines, butitisalso possible
to modify blocks of text with the commands of the function key set. Modifying blocks
of text involves 2 steps. first marking the text block and second selecting the action to be
taken.

To return to the main menubar, pressthef 8 | MAI N MENU | function key.

4.5.1 Mark Block

Position the cursor at the beginning of the text to be blocked and press
f1|BLOCK TEXT

The following message appears.
Mar k set

Now positionthe cursor at the end of thetext to be blocked. All text between thefirst cursor
position and thelast cursor positionwill beincluded in the block and therefore modified by
the selected action.

4.5.2 Copy Block

The text block will be copied into the “block memory” area of memory. When this has
compl eted, the following message appears:

n characters copied into nenory
The “block memory” remains unchanged until either replaced by a new block of text or

deleted.

4.5.3 Delete Block

Theblockedtext iscopiedinto“block memory” and del eted fromthetext. When completed,
the foll owing message appears.

n characters noved i nto nenory

SQL/R A.01.00



4.5 Text Block Management

46

4.5.4 Insert Block

The contents of “block memory” are inserted into the text at the cursor position. When
compl eted, the following message appears:

n lines inserted

You may repeat thiscommand to i nsert the same text block into the text in severa locations.

To move atext block withinafile pressf 4 | DELETE BLOCK |, then position the cursor to
the new location and pressf 5 | | NSERT BLOCK].

45,5 Save Block

To save atext block from “block memory” as a separate file, press f 6 | SAVE BLOCK|.

The following message appears.
wite block to fil enane:

Enter afilename and press(« .
The block is saved as afile and the foll owing message appears.

bl ock text saved: infotext

The infotext displays the filename, the number of saved characters and lines, and the line
number of the cursor position.

SQL/R A.01.00



Editor

a7

4.6 Search and Replace

The editor provides a search and replace feature to locate specific text and replace it with
different text. The specified search pattern can consist of regular expressions or specific
character strings.

A regular expression is a sequence of characters that defines a set of character strings.

o A normal character represents the same character in the text.
Smith searches for “Smith” in the text

e A dot. isaplaceholder for any single character.
de. searchesfor “der”, “des’, “den”, etc.

¢ A~ meansthat the following expression occurs at the beginning of aline.
" SELECT searchesfor “SELECT” at the beginning of aline.

A $ means that the following expression occurs at the end of aline.
SELECT$ searchesfor “SELECT” at theend of aline

Characters enclosed in square brackets [ ] are searched regardless of the order in
which they are listed. Sequentia characters can be abbreviated with a- (hyphen).

[0-9] searchesfor dl numeric characters

[abc]  searchesfor character stringscontaining “a’, “b” or “c”

o If oneof thespecia search charactersisfollowed by an (*) asterisk, then the characters
represented by the search characters can be repeated several times.
A[0-9]*B searches“A12...76B".
Several numeric characters can occur between “A” and “B”.
e To search any of the above wildcard characters as a literal, place a backdash (\)
before the character.
20.\. 00 searchesfor 201.00, 202.00, 20a.00 etc.

SQL/R A.01.00



4.6 Search and Replace

48

4.6.1 Search

You can search forwards as well as backwards. Forwards means from the cursor position
to the end of thetext and backwards means from the cursor position to the beginning of the
text. To search forwards, press

f1
The following message appears.
Forward search:

Enter the search pattern and press ().

When the search pattern is found, the string is highlighted and the cursor is positioned at
the beginning of the string. If the search string isnot found, the following message appears:

pattern not found

To search the same pattern in another direction, press RETURN when prompted for the
search pattern. The search proceeds as normal.

4.6.2 Replace

Press the key
fa

The following message appears.
Repl ace:

Enter the text that should be replaced and press RETURN.

The search text can contain regular expressions. When the text isfor example Al 1- 9] B
and should be replaced by AB, then all expressions such as AOB, A1B, ... A9B will be
replaced by AB.

SQL/R A.01.00



Editor

49

To replace a constant string containing characters that are used to represent regular expres-
sions, use a backslash (\ ) before the character. For example, to replace 20. 00, use the
string 20\ . 00.

The following message then appears, prompting for the replacement text:
Repl ace: ... by:
Enter the desired replacement text and press RETURN. If the replacement text containsan

ampersand &, the original text will be inserted in thisposition. To avoid this, designate the
ampersand & as a literal by preceding it with abackdash \ .

The search text will be searched forward of the cursor position, and when found, the cursor
will stop at the first position of the found search text.

The following message appears.
replace (old text) by (newtext) ? (!/y/n)
Pressing(y |for “yes’ replacestheold text with the new text and displaysthe next occurence

of the search text. Pressing (n)for “no” leaves the text unchanged and displays the next

occurence of the search text. Pressing @ for “al” replacesall occurences of the search text
with the new text without prompting for each occurence.

To end the search / repl ace operation, press( BREAK ] at any time.

If the search text is not found, the following message appears:
pattern not found

After asuccessful text replacement, the foll owing message appears.
n replacenent(s) in m line(s)

N represents the number of times the search text was found and replaced with the new text.
M represents the number of modified lines resulting from the search / replace.

4.6.3 Global Replace

Press the key

SQL/R A.01.00



4.6 Search and Replace

50

f 5| GLOBAL REPLACE]

The entry of the search and replace texts functions as described previously, the search text
isreplaced without prompting the user to confirm the change. The cursor position remains
unchanged during the operation. After the globa replace ends, the following message
appears.

n replacenent(s) in m line(s)

N represents the number of times the search text was found and replaced with the new text.
M represents the number of modified lines resulting from the search / replace.

SQL/R A.01.00



5

The Usage of SQL/R

This chapter contains a detailed description of the SQL /R language and specific examples.
All examples are based on the accompanying sample database and can be performed by
you. The examples were designed to produce lists similar to those commonly used by
business. Thisway, you can probably adapt these sample reports by simply modifying the
item and table names.

Before beginning this chapter, you should be familiar with the SQL/R basics covered in
chapter 3.

All examples are located inthe/ usr/ sql r/ sanpl e directory and are designated with
the file name man and a number. The exact file name is shown in small print in the right
margin of the page.

Tousetheseexampl es, it will benecessary to changetothedirectory/ usr/ sql r/ sanpl e.
To do this, enter:

cd /usr/sqlr/sanple

The sample database islocated inthe/ usr / sql r/ db directory and is named DB.

The sample results shown in this chapter are printed in simplified form to show the results
format. To view actual results, practice the exampl es on the accompanying sample database.



5.1 An Easy List of Customers

52

5.1 An Easy List of Customers

The goal of this section isto explain the steps necessary to produce alist. To demonstrate
these steps, an example is presented in which alist is produced using the basic elements of
SQL /R language.

Theindividua steps:

o Opening the database

e Sdlecting items ( columns) from atable

o Formating output without aform file

o Formating output with aform file

o Using batch files and parameters
We want to produce alist of customers from the “CUSTOMERS’ table, which is part of
the “DB” database. Thelist will report the customer number, the customer matchcode, the

complete customer name, and the month-to-date turnover. We will only select customers
with actua turnover. Thelist will be sorted by customer number in ascending order.

5.1.1 Opening the Database

A database must be opened before records can be extracted. To open a database, enter the
command:

OPEN DATABASE "name";
The name of thedatabase isenclosed in quotes. Inthisexample, wewill give the command:
OPEN DATABASE "../db/db";

Please note that each SQL/R command endsin a semicolon.

You can al so open multipledatabases and use tabl es from each of these databases to produce
alist.

SQL/R A.01.00



The Usage of SQL/R

53

5.1.2 Selecting Items from a Table

The selection of items ( columns) from atable is done with the SELECT command. This
command consists of several parts:

selection of nitems . SELECT S1,S2,...,Sn
selection of thetable . FROM table name
conditionsfor the selection : WHERE conditions

sort order : ORDER BY 01,02,...,0n

To produce thelist in our example, enter the following commands as shown:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, namel, name2, turnover[0]
FROM customers
WHERE turnover[0] > 0

ORDER BY custno; man1l
Result:
PAGE 1
CUSTNO MATCHCODE NAME1 NAME2 TURNOVER [0]
00001  KUGEL Kugelfischer Maschinenfabrik 1000.00

While customer number and matchcode correspond to exactly one item, customer name
and turnover are stored in a different way in table CUSTOMERS.

The customer name is a combination of two fields, namel and name2.

SQL/R A.01.00



5.1 An Easy List of Customers

54

Thefidd turnover isan array composed of 3 elementsthat each contains adifferent value
as shown here:

turnover[0] = month-to-date
turnover[1] = year-to-date
turnover[2] = previousyear

A particular element in an array will always be retrieved by use of aindex number, which
inthisexampleis0. Remember to number your €l ements beginning with zero. Thismeans
that the n-th element in an array is numbered n-1 in the index.

The commands described have extracted the desired records from the table. Now we will
format these records to produce the find list.

SQL/R A.01.00



The Usage of SQL/R 55

5.1.3 Formatting the Output without a Form File

Because the customer name is composed of the data in two separate fields, two fields will
also be produced in the list. To join the two fields in the output, use the & (ampersand)
operator and an empty space enclosed in quotesto display the two name partstogether with
ablank between the names.

There are two ways to do this. One way is to include this expression in the SELECT
command:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, namel & " " & name2, turnover[0]
FROM customers
WHERE turnover[0] > 0

ORDER BY custno; man12
Result:
PAGE 1
CUSTNO MATCHCODE NAME1&" "&NAME2 TURNOVER [0]
00001  KUGEL Kugelfischer Maschinenfabrik 1000.00

The second adternative is to use the FI ELD command to define an aternate name. This
alternate nameisthen inserted into the SELECT command in place of thetwo origina item
names.

OPEN DATABASE "../db/db";

FIELD name = namel & " " & name?2;

SELECT custno, matchcode, name, turnover[0]
FROM customers

WHERE turnover[0] > 0
ORDER BY custno; man13

SQL/R A.01.00



5.1 An Easy List of Customers

Result:
PAGE 1
CUSTNO MATCHCODE NAME TURNOVER[0]
00001  KUGEL Kugelfischer Maschinenfabrik 1000.00

The actua fiddd name is used as a heading in the report. This field name may not be
self-explanatory though. Therefore the capability exists to rename this report heading in
the SELECT command line. Inthe previous report examples we have always used the field
name asit appears in the SELECT statement. However, you can aso refer to afield (item)
by anumber representing thefield positioninthe SELECT command. Thisnumerica dias
can be used in the ORDER BY, GROUP, and arithmetic calculation commands (such as
SUM.

In our example above, the first field name is custno. The numerical aias for this field
would be 1, since it isthe first field when counting from left to right. The same principle
appliesto the other fields as well.

NOTE: You must use anumerical diasfor afield if you assigned an alternate name to one
or more fieldsin the SELECT command.

The next exampl e showshow you woul d use alternate headings and the alias naming feature:

OPEN DATABASE "../db/db";

FIELD name = namel & " " & name?2;
SELECT
custno "Custno.'", matchcode "Matchcode",

name "Company'", turnover[0] "Monthly Sales"
FROM customers
WHERE turnover[0] > 0
ORDER BY 1; manl4

SQL/R A.01.00



The Usage of SQL/R

57

Result:
PAGE 1
Custno. Matchcode Company Monthly Sales
23062 KELLER Keller, Ihne & Tesch KG 1000.00

To further enhance thereport, we can use the REPORT command. Now wewill add areport
title and the current date to the report:

OPEN DATABASE "../db/db";

FIELD name = namel & " " & name?2;
REPORT
SELECT
custno "Custno.'", matchcode "Matchcode",

name "Company'", turnover[0] "Monthly Sales"
FROM customers
WHERE turnover[0] > 0
ORDER BY 1
TITLE AS "CUSTOMER SALES FOR CURRENT MONTH/SORTED BY CUSTOMER NUMBER/"
DATE AS TODAY; manl5

SQL/R A.01.00



5.1 An Easy List of Customers

58

Result:
08/01/93 CUSTOMER SALES FOR CURRENT MONTH PAGE 1
SORTED BY CUSTOMER NUMBER
Custno. Matchcode Company Monthly Sales
éI‘S(‘)62 I‘{];'.I:.LER I‘{;iler, Ihne & Tesch KG 1000‘.(‘)(‘)

As you can see, we used Tl TLE AS clause to add a report title. If the title consists of
more than one line, use the dash (/) to mark the separation between the individual lines of
thetitle. Each linewill then be automatically centered. Page numbers always appear inthe
right margin.

Theuse of theDATE AS command printsthe current datein theleft margin. You can either
enter a specific date format with the DATE AS command or use the word TODAY. In this
case, the date format configured with the SET DATE command will be used. Default is
the American date format MM/DD/Y'Y.

A specific date format can be configured using the SET DATE command as follows:
SET DATE = "%l. %n %" ;

Thiscommand producesthe European dateformat DD.MM.YY. The alowabledateformats
are shown in appendix B.

The REPORT command also gives you the capability to calculate subtotals and totals by
using the CALCULATE command. In the next example, we want alist of customers with a
total showing the number of customers and the total sales for al customers.

SQL/R A.01.00



The Usage of SQL/R

59

OPEN DATABASE "../db/db";

FIELD name = namel & " " & name?2;
REPORT
SELECT
custno "Custno.'", matchcode "Matchcode",

name "Company'", turnover[0] "Monthly Sales"

FROM customers

WHERE turnover[0] > 0

ORDER BY 1
CALCULATE

COUNT( 1 ) BREAK ON REPORT,

SUM( 4 ) BREAK ON REPORT
TITLE AS "CUSTOMER SALES FOR CURRENT MONTH/SORTED BY CUSTOMER NUMBER/'
DATE AS "Date: %4d.%m.%y";

SQL/R A.01.00

manl6é



5.1 An Easy List of Customers

60

Result:
Date: 30.01.93 CUSTOMER SALES FOR CURRENT MONTH PAGE 1
SORTED BY CUSTOMER NUMBER
Custno. Matchcode Company Monthly Sales
ééé62 kﬁLLER K;iier, Ihne & Tesch KG 1000:66

100 COUNT
10000.00 SUM

Thecalculations are determined by an arithmetic operator followed by alist of field numbers,
enclosed in parentheses, to which the arithmetic is applied. Within a REPORT command,
you can define several calculations, separated by commas. Theresults of these calculations
will al be reported on onelinein the output, and in the order in which they were entered in
the command.

The BREAK ON command defines when a subtotal should be listed. To display atotal for
the entire report, use the BREAK ON REPORT command. In the previous example, the
BREAK ON REPORT command was used to display atotd for the number of customers
and their total sales at the end of the report.

By default, subtotal sand totalswill befollowed by the name of the arithmetic function used
to calculate the number. In our previous example thiswas COUNT and SUM However, you
can also substitute a specific text labe for this arithmetic label. Thisis done by entering
such alabel in quotes directly after the arithmetic function in the CALCULATE command.

The CALCULATE command is then entered as follows:

CALCULATE
COUNT( 1 ) "Customners"
BREAK ON REPORT
SUM 4 ) "Sal es Total "
BREAK ON REPORT

After you have the desired output online, you can print the report. The output will appear
with the default length of 24 lines ( normal screen length).

This value is probably not appropriate for your printer. Therefore you may want to reset
it with the LENGTH command. This command appliesto output sent to the printer as well

SQL/R A.01.00



The Usage of SQL/R 61

as to your display screen. Output can be sent to the printer by using the | NTO PRI NTER
command, as shown in this example:

OPEN DATABASE "../db/db";

FIELD name = namel & " " & name?2;
REPORT
SELECT
custno "Custno.'", matchcode "Matchcode",

name "Company'", turnover[0] "Monthly Sales"

FROM customers

WHERE turnover[0] > 0

ORDER BY 1
CALCULATE

COUNT( 1 ) BREAK ON REPORT,

SUM( 4 ) BREAK ON REPORT
INTO PRINTER
TITLE AS "CUSTOMER SALES FOR CURRENT MONTH/SORTED BY CUSTOMER NUMBER/'
DATE AS "Date: %d.%m.%y"
LENGTH = 72; manl7

NOTE: The default printer is the system printer. To select a different printer, use the SET
PRI NTER command. For more information on this command, see 6.21.5 on page 127.

SQL/R A.01.00



5.1 An Easy List of Customers

62

5.1.4 Formatting the Output with a Form File

Report formats can a so be enhanced by the use of aformfile. Form files are referenced by
the USI NGcommand in the REPORT command section. It isnot necessary to define report
and field titlesif aformfileisused. These can be defined in the form file.

The report defined in the previous example is modified to use aform file in thisway:

OPEN DATABASE "../db/db";
FIELD name = namel & " " & name?2;

REPORT
SELECT custno, matchcode, name, turnover[0]
FROM customers
WHERE turnover[0] > 0
ORDER BY 1
CALCULATE
COUNT (1) BREAK ON REPORT,
SUM(4) BREAK ON REPORT
INTO PRINTER
DATE AS "%d.%m.%y"
LENGTH = 72
USING "man18.frm"; man18

NOTE: Use of the TI TLE AS command is not allowed when using aform file. Also the
USI NG command must be the last command in the REPORT section.

A form file consists of a number of sections, separated by comment lines. These comment
lines always begin with two percentage symbols %846

The first section is the page heading that appears at the top of each new page. This page
heading processes the report title, date and page number. You aso have the option of
including results of the SELECT command in this page heading section.

The following linesillustrate the page heading shown at the end of this section:

LI ST OF CUSTOMER SALES FOR CURRENT MONTH Page: $page
SORTED BY CUSTOVER NUMBER Date: $date

SQL/R A.01.00



The Usage of SQL/R

63

Cust no Mat chcode Conpany Monthly Sal es

%6 end of page header

The page header section shown includes two special options, namely the $page and the
$dat e. The $page option is important, because it consecutively numbers the pages of
the output. The page number position is defined in the form file. The only requirement is
that the $page option must appear in either the page header or footer sections.

Similarly, the $dat e option defines the date in the report. The $dat e optionisdifferent
from the $page option in that the $dat e option can be used in any section of the form
file. If no dternate date format is defined by using the DATE AS command, then the date
format default defined by the SET DATE command is used.

The second section of the form file defines the format of the lines of output produced as a
result of the SELECT command:

@ustno @matchcode @ane @ urnover[0]
%o end of line format section

or

a @ @ @

%o end of line format section

The“@" character sets the alignment of the field columnsin the output. The value of the
individua fields in aline are referenced in the form file by using either the field name or
the field positionin the SELECT command.

Each lineof theoutput, retrieved using the SELECT command, will bein thedefined format.

Thefield valuesretrieved with the SELECT command can a so be used in the page heading
section. The values shown inthe page heading are alwaysthe actual field values at thetime
the page heading is produced.

The formfile must include abreak section for each cal culation defined within a REPORT or
CALCULATE command. Thisbreak sectionthen definesthe output format for the cal cul ated
values. The break sections should be defined in the form file in the same sequence as they
appear in the REPORT command.

Cust oner s: a

%06 end of the break section for COUNT(1)

Sal es total: @
%0 end of the break section for SUM 4)

SQL/R A.01.00



5.1 An Easy List of Customers

64

A page footer section can also be defined in the form file. This page footer will appear at
the bottom of each page.

Finally, the complete form file has the following format:

CUSTOMER SALES FOR CURRENT MONTH Page: $page
SORTED BY CUSTOMER NUMBERS Date: $date

Custno Matchcode Company Monthly Sales

%% end of page heading
01 02 03 04
%% end of line format section

Customers: 01

%% end of break section for COUNT(1)

Sales total: 04
%% end of break section for SUM(4)

SQL/R A.01.00

man18.frm



The Usage of SQL/R

This form file produces the following result:

CUSTOMER SALES FOR CURRENT MONTH Page: 1

SORTED BY CUSTOMER NUMBER Date: 01.08.92
Custno Matchcode Company Monthly Sales
23062 KELLER Keller, Ihne & Tesch KG 1000.00
Customers: 100

Sales total: 10000.00

NOTE: Thelengthof afield display isdetermined by the field type and the settings defined
withthe FI ELD... DI SPLAY AS command. The appearance of afield in the output is
defined in the form file. Field values longer than the space available in the output will be
right truncated.

SQL/R A.01.00



5.1 An Easy List of Customers

66

5.1.5 Using SQL/R and Parameters from the Shell

The previous section explained how to interactively use SQL/R. It isaso possible to store
these commands in afile and execute thisfile later. You usethe sqgl r exec command to
dothis. Thesql r exec command isused as follows:

sqgl rexec custoners

Where “customers’ isthe name of the SQL /R script file. In addition, you can specify up to
8 parameters at runtime with this command. In the following example, all customers with
sales are reported. To request alist of al customers with a minimum of 1,000 in sales, a
value of 1,000 is needed for the WHERE command. It is possibleto providethisvaue with
thesql r exec command for use with the stored SQL /R commands.

Please note: Since commas are used to separate the different parameter val ues, no commas
should be used inthe value itsalf.

sqgl rexec custoners 1, 000. 00 wrong
sqgl rexec custoners 1000, 00 wrong
sqgl rexec custoners 1000. 00 right
sqgl rexec custoners 1000 right

The name of the form file used to format the output should be specified as follows:
sqgl rexec custoners 1000 custoners.frm

Where “customers.frm” isthe name of the form file. To properly execute this command, a
modification is required for the command file“ customers’. Parameters used in cal culations
should be referenced by a$ character followed by a number representing the sequence in
which the parameter appearsinthesql r exec command. These $n designationsare then
calculated as actual values during the operation.

SQL/R A.01.00



The Usage of SQL/R 67

OPEN DATABASE "../db/db";
FIELD name = namel & " " & name?2;

REPORT
SELECT custno, matchcode, name, turnover[0]
FROM customers
WHERE turnover[0] > $1
ORDER BY 1
CALCULATE
COUNT (1) BREAK ON REPORT,
SUM(4) BREAK ON REPORT
DATE AS "%d.%m.%y"
LENGTH = 72
USING "$2"; man19

Please notethat as shown in thisexample theform file is passed as a character string to the
USI NG command. Therefore the parameter has to be enclosed in quotation marks too.

The parametersfromthesql r exec command can a so be carried to theformfilein which
$n marks are used to indicate which parameter should be used where.

LIST OF CUSTOMERS WITH SALES GREATER THAN $1 Page: $page
IN CURRENT MONTH SORTED BY CUSTOMER NUMBERS Date: $date
Custno Matchcode Company Monthly Sales

%% end of page heading
01 02 03 04
%% end of line format section

Customers: 01

%% end of break section for COUNT(1)

Sales total: 04

%% end of break section for SUM(4) man19frm

The form file had been modified to show a different value for the sales minimum in the
page header.

You can a so create ashort shell script to prompt the user for the parameter val ues as shown
here:

SQL/R A.01.00



5.1 An Easy List of Customers

#!/bin/sh
# manl19.sh

echo "LIST OF CUSTOMERS WITH SALES\n"

echo "SALES MINIMUM GREATER THAN: \c"
read sales
if [ -z "$sales" ]
then
sales="0"
fi

echo "FORM FILE : \c"
read form
if [ -z "$form" ]

then
form=manl9.frm
fi
sgqlrexec -n $sales $form | 1lp -onb -172 man19.sh

As shown, the user is prompted for the necessary input and these inputs are then used for
the report generation. The resulting output (stdout) is sent to the system printer.

SQL/R A.01.00



The Usage of SQL/R

69

5.2 List of Customers Grouped by Sales Volume

The second exampl e illustrates additional capabilities of the commands explained so far.

We want to develop alist of customers with the customer number, name and sales for the
previous year. The customers should be grouped by sales and the output should be sorted
by salesin descending order and in addition, the sales of each group should be subtotal ed.
This same report should contain a summary list with the number of customers per group
and a comparison of current and previousyear sales.

The following exampl e shows the SQL /R commands used to prepare the report. Following
this example is a step-by-step description of the commands.

The command file man21:

OPEN DATABASE "../db/db";
SET DATE = "%d.%m.%y";

FIELD prevsales = turnover[2] DISPLAY AS MONEY(12, 0);
FIELD ytdsales = turnover[1] DISPLAY AS MONEY(12, 0);
FIELD groups = IF (prevsales >= 800000, "A",

IF (prevsales >= 250000, "B", "C"));

REPORT
SELECT groups, custno, namel, prevsales
FROM customers
WHERE prevsales <> 0
ORDER BY 4 DESC
CALCULATE
SUM(4) BREAK ON (1) PAGE
USING "man2la.frm";

SQL/R A.01.00



5.2 List of Customers Grouped by Sales Volume

REPORT
SELECT
group, COUNT (custno) , SUM(prevsales), SUM(ytdsales)
FROM customers
GROUP BY 1
CALCULATE
SUM(2,3,4) BREAK ON REPORT
USING "man21b.frm";

EXIT ; man21

Theformfileman2la. f rm

CUSTOMER SALES REPORT page: $page
- class @1 - date: $date
Customer Company previous year sales

%% End of heading
02 03 04
%% End of results

%% End of break on SUM(4) man21afrm

Theformfileman21b. f rm

CUSTOMER SALES REPORT page: $page
- summary - date: $date
Class Count ©previous year sales YTD sales

%% End of heading
01 02 03 04
%% End of results

%% End of break on SUM(2,3,4) man2ibfrm

SQL/R A.01.00



The Usage of SQL/R

71

Note that because each of the two REPORT commands creates a completelist, severa form
files can be used. Therefore, you can create a command file in which there are severa
REPORT commands, each producing a separate list. You can then execute this command
fileby usingthesql r exec command.

The previous commands shows the following enhanced SQL /R features:

o theDl SPLAY ASruleintheFl ELD command

o the use of conditional expressions | F(condition, yes, no)

o use of sort order

¢ enhancement of the CALCULATE rule within the REPORT command

o use of the GROUP BY ruleand itsfunction in selecting columnsin atable

o the EXI T command
In this example, because the selected sales are not individual items, but rather elements of
an array, we use the FI ELD command to define an dternate name for the element. This
helps to make the foll owing commands more readable. 1n addition, we want to display the

vaue of the sales in Dollars ($) without decimals. To do this we use the DI SPLAY AS
rule.

FI ELD prevsal es = turnover[2] DI SPLAY AS MONEY(12, 0);

The next task is to define the groups and to produce the desired values for these groups.
You use the FI ELD command to define atemporary label for the columns. We did that in
a previous example and caled a column name. The values for the entries of the column
group are calculated through a nested | F command.

SQL/R A.01.00



5.2 List of Customers Grouped by Sales Volume

72

The arrangement of the commands is illustrated by the following questions and relative
answers:

Islast year's sales amount greater or equal to 800,000.00 ?

Yes the customer belongsin group A.

No Islast year's sales amount greater or equal to 250,000.00 ?
Yes the customer belongsin group B
No the customer belongsin group C

This decision tree could al so be expanded to handle a larger number of groups.

The following FI ELD command in connection with the | F command shows how the
SQL /R language can be used to answer the questions shown above.

FI ELD group = I F (prevsal es >= 800000, "A",
| F (prevsal es >= 250000, "B", "C"));

The | F command is used to choose between two selections, based on the result of a
previously evaluated condition. These selections can be constants, variables, cdculations,
or, as shown in this example, specific conditions.

Thefirst list will be sorted by previous year's sales amounts. Generaly, listsare sorted in
ascending order. To sort thelist in descending order, use the word DESC in addition to the
column label or item number.

ORDER BY 4 DESC

To calculate subtotals, in this case the total s of the previousyear’'s sales amounts for groups
A, B, and C, you use the CALCULATE rule. The list should aso cover these three points:

o Caculatethe previous year'stotal sales prevsales

o Display the subtotal whenever the value in the column group changes, and reset the
subtotal to zero

o Generate a page break after the display of each subtotal

To format the output this way, use the following commands:

SQL/R A.01.00



The Usage of SQL/R 73

CALCULATE
SUM pr evsal es) BREAK ON (group)

or

SUM 4) BREAK ON (1)

In contrast to the first example, we defined totals to be calculated depending on columns.
The command BREAK ON REPORT is used to define calculations (e.g. building totals)
using all entries of alist. To retain subtotals, it is necessary to define exactly where each
subtotal should be reported. To report these subtotals, include the column label after the
BREAK ON command. When the BREAK ON command is followed by a column label,
the subtotal is reported and the counter is reset to zero whenever the value of the column
changes and the calculation is restarted.

BREAK ON (refl, ref2, ...)

It isaso possible to define a line or page advance using the BREAK ON command. The
option SKI P

n

causes the output to move forward n lines. The PAGE[ n] option causes the output to
advance n pages, where the default isn = 1. The line and page advances are performed
after each subtotal.

To print our list with only one group per page, we will use the PAGE option as follows:

CALCULATE
SUM pr evsal es) BREAK ON (group) PAGE

or

SUM 4) BREAK ON (1) PAGE

In the second report, a tota is calculated for al customers and al sales. Therefore we
will caculate three subtotals using the function SUMwithin the CALCULATE command.
Because we want a grand total, we will use the BREAK ON REPORT command as shown
here:

CALCULATE
SUM 2) BREAK ON REPORT,
SUM 3) BREAK ON REPORT,
SUM 4) BREAK ON REPORT

SQL/R A.01.00



5.2 List of Customers Grouped by Sales Volume

74

Becausean arithmeti c function can containalist of arguments, wecan simplify thecommand
as shown here:

CALCULATE
SUM 2, 3, 4) BREAK ON REPORT

Bothwaysof structuringthe command producethesametotals. Thefundamental difference
isin the output: Because each BREAK ON command produces a separate break and total,
the first method would produce three separate breaks and totals and the output would show
each grand total on aseparate line. Using the second method would produce only one break
and would show the same grand totals but on oneline.

The fundamental enhancement to our first example is to include the GROUP BY option
within our SELECT command. Our objectiveisto produce alist showing only the groups
and their subtotals.

To dothis, we need to group al customersinto group A, B, or C withthe help of the GROUP
BY option:

GROUP BY refl, ref2,

All entries in the table which have an identical value for the specified column (refl, ref2,
...) are grouped together. In our example this means that al customers are separated by
saesintogroup A, B, or C.

Please note that the result is only one record. In order to clearly match the values of the
other selected columns in this result lineit is necessary that the columns either contain a
constant value or are theresult of a calculation. For our example this means that the yearly
sales, which are not identical, must be totaled using the SUMfunction, and the customer
names must be counted using the COUNT function.

Shown hereisthefull SELECT command:
SELECT
group, COUNT(custno), SUM prevsal es), SUM ytdsal es)
FROM cust oner s
GROUP BY 1
The last command given isthe EXI T command. This command ends the SQL /R process.

After the EXI T command you may add comment lines, since al information listed after
the EXI T command isignored.

SQL/R A.01.00



The Usage of SQL/R

75

5.3 Use of Multiple Tables

In the previous examples we focused only on the datain an individual table. Normally you
would use the data from several tablesto producealist.

Assume that we want to produce a list of al customer sales orders. For thislist we will
need the following information:

Table orders containsthe following order heading information:

orderno order number

orderid ID-number for identifying the line items
custno customer number

ordertype order type (here: sales)

orderstat  order status

Tablelineitems containsinformation relating to the ordered items:

orderid I D-number for identifying the heading information

itemno item or part number
qty guantity

price price per unit

ic item count code

delivdate scheduled delivery date
Table parts containsthe following information on the parts/ items:

partno part number
descripa  part description ( first part )
descripb  part description ( second part )

Table customers contains the following customer related information:

custno customer number

matchcode customer id key

namel customer name ( first part )
name2 customer name ( second part )

We will need to use data from all four tables to produce the list. It is not possible to use
the SELECT command to retrieve data from multipletables. Therefore we must find away
to link the four tables respective the data records in them. We can do this by using the
CREATE VI EWcommand.

By using the CREATE VI EWcommand, we are able to create a new record type, and
therefore anew table, also called a VIEW. Thistable contains the various record typesand

SQL/R A.01.00



5.3 Use of Multiple Tables

76

exists only logicaly, not physicaly. The various record types are arranged in a specific
hierarchy (PATH) and are linked by common dataitems.

For the first step, we will link the order fields from the orders table to the related fields
from the lineitems table. The common data field is the ID-number orderid. The new
record typewill be caled temp.

So we build the the following CREATE VI EWcommand:

CREATE VI EWtenp PATH orders
TO lineitemrs WHERE orderid = orderid;

Thislink can beillustrated as follows:

orders

lineitems
lineitems.orderid = orders.orderid

We can now work with the new table temp as shown in the previous examples and define
theformat of our list. Thefield ic does not have adefinite value, but only a code. Therefore
wewill usethe FI ELD command to definethe item itemcount and assign a specific value.
In addition we will use the FI ELD command to specify the total value of one line item
entry and to define the output format. Because the list will only contain sales orders, we
define the ordertype as“SO”. In summary, we will use the following list of commands:

SQL/R A.01.00



The Usage of SQL/R

77

OPEN DATABASE "../db/db";
FIELD delivdate DISPLAY AS DATE( "Yd¥m%y");

FIELD icnt = IF (itemcount = "1", 10,
IF (itemcount = "2", 100,
IF (itemcount = "3", 1000, 1)))
DISPLAY AS INT(4);

FIELD amount = (qty * price / icnt)
DISPLAY AS MONEY (10, 2);

CREATE VIEW temp PATH orders
TO lineitems WHERE orderid = orderid;

SELECT
custno,
delivdate, orderno, ordertype, orderstat,
itemno, qty, price, icnt, amount
FROM temp
WHERE ordertype = "VK" AND itemno <>""; man3L

The conditionstemno <>"" appearsto be unnecessary, but it isimportant for thefollowing
reason: the CREATE VI EWcommand buildsnew recordseven if thereareno lineitemsfor
agiven order. In this case, thefields of the lineitem record part would be empty. In order
to limit the report to orders containing line items, it is necessary to include this condition
check.

SQL/R A.01.00



5.3 Use of Multiple Tables 78

The first enhancement to thelist consists of including theitem information. To do this, we
will expand our use of the CREATE VI EWcommand. We will broaden therecord temp to
jointhetablelineitems to theitem description table parts. The common field istherefore
the item number, which is called itemno inthetable linestems and called partno inthe
parts table. The new CREATE VI EWcommand then reads as follows:

CREATE VI EWtenp PATH orders
TO lineitens WHERE orderid = orderid
TO parts WHERE partno = itemmo;

orders

lineitems
lineitems.orderid = orders.orderid

parts
parts.partno = lineitems.itemno

The recordtype temp consists of three record types, which are linked in sequential order.
The linking of different records can continue as necessary, as long as common data fields
exigt.

SQL/R A.01.00



The Usage of SQL/R

79

We can now access the parts information table and expand our command list as follows:

OPEN DATABASE "../db/db";
FIELD delivdate DISPLAY AS DATE ("%d%m%y'");

FIELD icnt = IF (itemcount= "1", 10,
IF (itemcount= "2", 100,
IF (itemcount= "3", 1000, 1)))
DISPLAY AS INT(4);

FIELD amount = (qty * price / icnt)
DISPLAY AS MONEY (10, 2);

CREATE VIEW temp PATH orders
TO lineitems WHERE orderid = orderid
TO parts WHERE partno = itemno;

SELECT
custno,
delivdate, orderno, ordertype, orderstat,
itemno, descripa, descripb,
qty, price, icnt, amount
FROM temp
WHERE ordertype = "VK" AND itemno <>""; man32

To further enhance our list, we will include additional customer information. To access
this data, we need to define another link. The customer number custno is part of the order
heading record orders. Therefore weneed tojointheorder heading orders tothe customer
table customers. Thislink will supplement the existing link. We will create thislink by
using theterm ANDwithinthe CREATE VI EWcommand. Theterm, AND, alwaysindicates
anew path which has no relationship to the previously defined path.

SQL/R A.01.00



5.3 Use of Multiple Tables

80

The modified CREATE VI EWcommand is arranged as follows:

CREATE VI EWtenp PATH orders
TO custoners WHERE custno = custno
AND |ineitens WHERE orderid = orderid
TO parts WHERE partno = itemmo;

An dternative arrangement for thiscommand is:

CREATE VI EWtenp PATH orders
TO (lineitens WHERE orderid = orderid
TO parts WHERE partno = itemmo)
AND custoners WHERE custno = cust no;

The parentheses are required in the alternative arrangement in order to clearly define the
connection. Without the parentheses the term AND would apply to the second TOstatement,
creating an incorrect link. Thiswould result in an error message, because the parts table
has no custno fidld. In certain cases, instead of an error you could produce an incorrect
list.

orders

ZON

lineitmes customers
lineitems.orderid = orders.orderid customers.custno = orders.custno

parts
parts.partno = lineitems.itemno

SQL/R A.01.00



The Usage of SQL/R

81

After modifying the CREATE VI EWcommand we can expand the SELECT command to

include the columns we want to display, as shown here:

OPEN DATABASE "../db/db";
FIELD delivdate DISPLAY AS DATE ("%d%m%y'");

FIELD icnt = IF (itemcount = "1", 10,

IF (itemcount = "2", 100,

IF (itemcount = "3",
DISPLAY AS INT(4);

FIELD amount = (qty * price / icnt)
DISPLAY AS MONEY (10, 2);

CREATE VIEW temp PATH orders
TO customers WHERE custno = custno
AND lineitems WHERE orderid = orderid
TO parts WHERE partno = itemno;

SELECT
custno, matchcode, namel, name2,
delivdate, orderno, ordertype, orderstat,
itemno, descripa, descripb,
qty, price, icnt, amount

FROM temp

WHERE ordertype = "VK" AND itemno <> '"'";

man33

Now that we have defined what we want to display, the remaining task isto define how this
data will be displayed. This includes defining the format, the sort order, the usage of the
REPORT command, and the cal cul ation and display of subtotals. Wewill create aformfile
to define the output format. The use of a form file allows us to define and save complex

report formats involving many fields. In addition, the command list is more readable.

The results will be sorted by customer number. Within each customer order, the individual
line items will be sorted by scheduled delivery date where identical delivery dates occur,
and the lineitems will be further sorted by order number. A subtota will be displayed for
each customer. Page headers will display the customer information for that page and there
will be apage break after each customer. Thefinal page of thelist will contain agrand total

for the report.

SQL/R A.01.00



5.3 Use of Multiple Tables

82

For the order statuswe will use the VALUES ARE rule of the FI ELD command. Theitem
orderstat isacoded datafield, therefore thefield content isa code with a specific meaning.
The VALUES ARE rule allows you to convert this code into a more readable format in the

list.

The complete list of commands for thisexample is as follows:

OPEN DATABASE "../db/db";

SET DATE = "%d.%m.%y";

FIELD delivdate DISPLAY AS DATE ("%d%m%y'");
FIELD orderno DISPLAY AS (10);

FIELD qty DISPLAY AS DOUBLE(6, 0);
FIELD price DISPLAY AS MONEY(8, 2);

FIELD status = orderstat
VALUES ARE (

13

"OPEN",

"IN PROCESSING",
"RELEASED TO AB",

"AB PRINTED",
"RELEASED TO LS",
"RELEASED TO RG",
"INVOICE PRINTED",
"ACCOUNTING NOTIF.",
"TRANSACTION COMPL.")

DISPLAY AS LEFT(18);

FIELD itemcount = IF (ic = "1", 10,

IF (ic = "2",

100,

IF (ic = "3", 1000, 1)))
DISPLAY AS INT(4);

FIELD amount = (qty * price / itemcount)
DISPLAY AS MONEY (10, 2);

SQL/R A.01.00



The Usage of SQL/R 83
CREATE VIEW temp PATH orders
TO customers WHERE custno = custno
AND lineitems WHERE orderid = orderid
TO parts WHERE partno = itemno;
REPORT
SELECT
custno, matchcode, namel, name2,
delivdate, orderno, ordertype, status,
itemno, descripa, descripb,
qty, price, itemcount, amount
FROM temp
WHERE ordertype = "VK'" AND itemno <>""
ORDER BY 1, 5, 6
CALCULATE
SUM(15) BREAK ON (1) PAGE,
SUM(15) BREAK ON REPORT
USING "man34.frm"; man34
The form file used in this example produces the following format:
SALES ORDERS BY CUSTOMERS Page: $page
Sorted by delivery date and order number Date: $date
Customer number: 01 Name: 03
Matchcode : 02 04
DELIV. ORDER NUMBER ITEM NUMBER QTY PRICE/ 1IC AMOUNT
DATE STATUS DESCRIIPTION
%% End of heading
@5 Q@6 Q9 Q12 Q13 /014 @15
Q@3 Q10
e11
%% End of detail line
Total for Customer @1 *k¥%k @15
%% End of break section SUM(15) BREAK ON 1 PAGE
TOTAL AMOUNT: *kk Q15
%% End of break section SUM(15) BREAK ON REPORT man34 frm

SQL/R A.01.00



5.4 Summary

84

5.4 Summary

The goal of this chapter wasto present the most important features of the SQL /R language
through specific examples. For information on using syntax not covered in this chapter,
for example some arithmetic functions, please see the reference section of this manual.
The reference section includes a compl ete description of the syntax, including some simple
examples that aren’t dways applicable to our example database.

To produce aligt, first retrieve the database entries. When the entries have been correctly
selected, the caculations and links can be tested. Next perform the sort (ORDER BY) and
grouping (GROUP BY) on these entries. The sort and grouping functionsare performed on
theretrieved entriesbeforetheoutput isproduced. Depending onthecomplexity, processing
these functions can take along time.

Formatting the report should always be the last step in developing alist and should not be
started before all data has been correctly generated.

In summary, the basic procedure for producing areport is as follows:

o Start SQL/R by entering the sqlr command from the HP-UX shell prompt.
o Define the necessary links of the tables using the CREATE VI EWcommand.

o Define the necessary virtual fields, including the appropriate cal cul ations and defini-
tionsusing the FI ELD command.

o Select the necessary data fields using the SELECT command and the WHERE condi-
tion.

e Test and correct the command list until the results are correct.

e Use the SELECT command within the REPORT command. Define subtotals and
totals using the CALCULATE rule.

o Define output formats using the FI ELD command and in some cases the DI SPLAY
ASrule.

o Enhance the REPORT command by using aform file (USI NG filename).

o Createtheformfile.

o Test the REPORT command by using theformfile and checking for error-free output.
¢ Addthe ORDER BY and GROUP BY optionsto the SELECT command.

o Finaly define of the output device, the page width and length.

SQL/R A.01.00



6

Reference

Thischapter describestheuseof the SQL /R moduleand i ncludesadefinition of the el ements
of the SQL/R language:

o Reserved words

Identifiers

o Constants

Arithmetic expressions

Character strings
o Conditions

Commands

This chapter is designed as areference work. It isnot atutoria of the SQL/R language.

For an introductionto SQL /R, see chapter 3. For explanation of how to create areport, see
chapter 5.



6.1 Starting of SQL/R 86

6.1 Starting of SQL/R

The product SQL /R consists of two modules:

o theuser interfacesql r (andsql r ed)

o theexecution modulesql r exec

The creation of a database query isinitiated through the sql r user interface. Thesql r

user interfaceisashell script which can becustomized. It callsthesql r ed binary program.
Pressing the function key labelled “ Start SQL/R” startsthe sql r exec execution module
with the actua text.

Thesql r command syntax is shown here:

Usage: sqlr [-d database] [-p password] [file]
You can use the - d and - p options to reference a database and a database
password, respectively. This database isthen opened each timesql r exec is
initiated. In this case the OPEN DATABASE command must not be used in a
query.

for example:

sqgl r custoner

SQL/R A.01.00



Reference

87

Thesql r exec command syntax is shown here:

Usage: sqlrexec [-€e][-n][-d dbnm[-p pswd] [batchfile [arg ...]]

options:
-hel p
-e

-n

-d dbnm
-p pswd

show usage (this list)

echo batch processing

suppress program banner
speci fy dat abase name and path
speci fy dat abase password

If batchfile is not present, input will be requested from stdin.
argunments will be passed to batchfile as $1 ... $8.

Opt i onal

You use the - d and - p optionsto open a database and enter the password. In
this case the OPEN DATABASE command is not available.

The - e option displayseach linethat is processed as it is entered.

The - n option suppresses the program banner for the report.

Thefirst argument isthebatch filename. If abatchfileisspecified, thereportis
produced automatically. All other arguments are treated as optional arguments
$1 through $8, usablein the batch file e.g. to specify ranges for data selection.
These optional arguments are overwritten when the RUN command is used.

for example:

sqgl rexec -n custoners 1000 2000

SQL/R A.01.00



6.2 Definition of Terms

88

6.2 Definition of Terms

Fied (or Item)

A field isthe smallest logical unit of adatabase. Its contentsare not limited to aword
or anumeric vaue, but can consist of several words,

for example Street: Martin Luther King Boulevard

Array

An array is a group of fields of the same type (also called dements) that can be
referenced with the same name and an index:

For example, when there are 12 values for monthly budget, the month of May:
budget[4], the month of January: budget[0]. Theindex of thefirst element is zero.
Record (or Entry)

A record isacollection of fields, and includes the access methods and dependencies.
Each field in arecord has a unique name. Records are stored in tables.

For example: A customer record consists of: number, name, address, etc.
An obviousway to access a customer record is by using
the customer number
Table (or Dataset)
A tableisacollection of records, arranged in columnar form.

Field Reference

A field reference is the name of afield and, optionaly, fully referenced by adding a
table name. The complete reference isimportant when the same field existsin more
than onetable:

for example custno, orders.custno or customers.custno
View
A view isavirtua table. Inthesimplest case, aview isasingletable. The CREATE
VI EWcommand allows you to create a view consisting of several tables. The view
then appears as asingle table that contains al the data fields of the individual tables.
Ocurrence

In cases where asingle table is referenced several times in one view (for example,
access to an article using its parts list header and positions), it is hecessary to define
an aternate name for each occurrence of adataitem. Thisisto differentiate between

SQL/R A.01.00



Reference

89

fields with the same name. This dternate name is different from an alias, because
the alternate name is not merely an additional name for the same data, but rather an
access to different field contents as well.

Path

A path isthe (logical) link between datatables. The type of link must be predefined
(inthe database schema) before you usethe CREATE VI EWcommand to link several
tables.

Alias
Andiasisapseudonym (aternate name) for a database field and is defined using the
FI ELD command (see page 108).

SQL/R A.01.00



6.3 Reserved Words

6.3 Reserved Words

Reserved wordsare SQL /R predefined words with a special meaning. These wordsare not
case sensitive.

Reserved Words
ALL DOUBLE MIN SKIP
AND EXIT MONEY STRLEN
ARE FIELD MONTH SUBSTR
ASC FILE NOT SYSDATE
ASCII FIXED NULL SUM
AVG FLOAT OPEN TERMINAL
BETWEEN FROM OCCURRENCE TIME
BREAK GROUP OF TITLE

BY HAVING ON TO
CALCULATE HELP OR TODAY
CENTER IF ORDER TRANSLATE
CLOSE IN OUTPUT TRIM
COUNT INT PAGE UPPER
CREATE INTO PATH USING
DATABASE LEFT PRINTER VALUES
DATE LENGTH REPORT VIEW
DAY LIKE RIGHT WHERE
DEFINE LOCALE RUN WIDTH
DESC LONG SELECT XOR
DESCRIBE LOWER SET YEAR
DIF MACRO SHORT

DISTINCT MAX SHOW

SQL/R A.01.00



Reference

91

6.4 Data Types

The HP Eloquence database supportsthe following data types:

Data Type Description

String Xn | acharacter string consisting of any chars
Integer I —32768 ... 32767

Dintegerr D | —231... 231 1

Short S | floating point number, 6 digits

Long L floating point number, 12 digits

SQL /R usesits own data types, which include the HP ELOQUENCE datatypes.

SQL /R supportsthe following data types:

| DataType | Value Range | HP Eloquence |
char a character string of any chars except binary zero | String
short —32768 ... 32767 Integer
int —9231 931 DInteger
long —9231 931 DInteger
float floating point number, 7 digits Short
double floating point number, 15 digits Long
date short, int, long, float, double
time short, int, long
fixed short, int, long
money float, double

The datatypes DATE, Tl ME, FI XED, and MONEY are logical data types. They describe,
how the corresponding field contents are interpreted and presented. They don't describe
the internal storage format nor the value range (see also FI ELD command, page 108).

DATE

TI ME

FI XED

SQL/R A.01.00

The field contents are presented as a date. The internal format and output
format are defined by using the FI EL D command.

The field contents are presented as time (HH:MM). The corresponding field
type must be short, long, or integer and be defined as follows: field = 100 *
hours + minutes.

The field contents are presented as a fixed point number. The corresponding
field type must be short, long, or integer. The field contents are divided by



6.4 Data Types

92

10™ and then output. The n represents the desired number of positionsafter
the decimal point.

MONEY The fidld contents are presented as a monetary amount. The output format
depends on the configured user environment (language).

Note: Character stringsareinternally endedwithanull character. Therefore, itisimpossible
to correctly display a character string that contains such a binary zero.

Note: The floating and double data types support the representation of exponents (e.g.
1E10). Thisisnot possiblewith SQL/R.

SQL/R A.01.00



Reference 93

6.5 Identifiers

An identifier consists of a maximum of 31 characters. These characters can be a phabetic,
numeric, or an underline (U). The identifier must always start with an a phabetic character.

Identifiers are not case sensitive. Therefore the identifiers “Name”, “NAME”, “name” are
treated the same.

| dentifierscan be used for all expressions such astableand fieldsnames. Theonly limitation
isthat no SQL/R reserved words are permitted.

I dentifiersconsisting of areserved word must be preceded by an underline(_). For example
“_time” isan identifier and not a reserved word.

6.6 Constants

Constants are val ues that are constant, regardl ess of database values. Constants can consist
of various datatypes, e.g. numbers, character strings, dates, times.

6.6.1 Numeric Constants

Numeric constants have the following format:
[+/=]nnn[.nnn]

Constants containing a decimal point are treated as double data types. All other numeric
constants are treated as integer values.

The period ' is used to represent the decimal point, regardless of the LOCALE vaue
selected.

1234 integer
—123 integer
12.34 double

1.2345 double
—1234.567890 double
123456 integer

SQL/R A.01.00



6.6 Constants 94

6.6.2 Character String Constants

A character string constant is a character string that begins and ends with quotation marks.
Either single or double quotation marks can be used. Note that the same quotation mark
must be used at both the beginning and the end of the string.

A character string constant can contain a maximum of 511 characters.

To use a quotation mark as a literal within the string, precede the quotation mark with a
backslash (\).

"This is a character string’
"This is a \"new" string"

6.6.3 Date Constants

Date constants can consist of either the European or the American format. Date constants
are reformatted into an internal format. Thisis necessary for performing operations such
as comparisons involving database fields that have been defined as of type date with the
FI ELD... DI SPLAY AS DATE command.

@MM/DD/YY  American format
@DD.MM.YY  European format

A zero (0) can be used to represent anull date.

6.6.4 Time Constants

Time constants are reformatted into an internal format. Thisis necessary for performing
operations such as comparisons and caluculations. Time constants are represented using
the following formats:

@HH:MM
@HHMM

SQL/R A.01.00



Reference

95

6.7 Arithmetic Expressions

Arithmetic expressions are used to perform calculations involving database variables and
constants.

Arithmetic Expression = Operand [ Operator Operand] ...

Constant

Field Reference
Operand=<{ Alias

Function

(Arithmetic Expression)

Operator = { +|- |* |/ }

AVG

MAX : .

M N ( [ALL | DI STI NCT ] Arith. Expression)
SUM

| COUNT( [ALL |DISTINCT] { * | Fidd Name } )
Function =< gTR EN( String Expression)

YEAR
| F( Condition, Arith. Expression, Arith. Expression)

DAY
MONTH $ ( DaeField)

SQL/R A.01.00



6.7 Arithmetic Expressions

96

A fidd reference is the name of a database item. When the field is an array, the field
reference refers to a single dement of the array. If the individual element is not specified,
then the first element of the array isused.

A field name can be used in several tables, views, and databases. |f severa tables are used
in a command, you must distinguish the field names by preceding the field name with the
table name ( e.g. item.number and customer.number ).

Order of precedence for operators:

0 parentheses

+, — positive/negative marks
x, /  multiplication and division
+, — addition and subtraction

Operatorswith equal priority are calculated from left to right.

6.7.1 Arithmetic Functions
SUM [ DI STI NCT ] arith. expression)

calculates the total of the arithmetic expression for al selected entries. This
function can only be used with numeric expressions (including time values).

AV [ DI STI NCT ] arith. expression)

calculates theaverage value of thearithmetic expressionfor all selected entries.
This function can only be used with numeric expressions (including time
values).

M N( arith. expression)

calculates the minimum value of the arithmetic expression for all selected
entries. This function can only be used with numeric expressions (including
date and time val ues).

MAX( arith. expression)

SQL/R A.01.00



Reference 97

calculates the maximum value of the arithmetic expression for all selected
entries. This function can only be used with numeric expressions (including
date and time val ues).

COUNT( [ DI STI NCT | ALL ] {* |field name} )
counts the number of entries.
STRLEN( string expression)
calculates the length of the specified character string.

These arithmetic functions are used to develop the results of a SELECT command calcu-
lation. The sets of entries needed for the calculations are produced by using either the
GROUP BY statement withina SELECT command or by using the CALCULATE statement
of a REPORT command.

When the DI STI NCT optionis used, only unique entries are used to calculate the results.
The DI STI NCT option can only be used once within a SELECT command.

Examples of arithmetic expressions and functions are shown here:

SELECT SUM itens.quantity * price );
SELECT AVQE DI STI NCT custoners.turnover[1] );
SELECT COUNT(*) FROM custoners;

6.7.2 Date Functions

MONTH( datefield)  returnsthe month (1-12)
YEAR( datefield) returnsthe year (4 digits)
DAY( datefield) returnsthe day (1-31)

The date functions produce integer va ues that can be used for calculations. The parameter
isalwaysadate, theresult of thefunction isthe day, month or year extracted from this date.

An example of adate function is show here:

SELECT YEAR(orders.date), itens.sales
FROM or der s;

SQL/R A.01.00



6.8 String Expressions

98

6.8 String Expressions

String expressions are specified the same way as string constants and fields.

string expression = operand [& operand] . . .

operand = { string constant | field reference | alias | function }
UPPER
LOAER } (string expression)

function = TRIM

SUBSTR( string expression, start, length)
| F( condition, stringexpression, string expression)

The ampersand (&) operator is used to connect several character strings.

SQL/R A.01.00



Reference 99

6.8.1 String Functions
UPPER( string expression )

shifts al lower case characters to upper case. Characters with an umlaut ()
are handled as specified by the configured environment ( see appendix D ).

LOWNER( string expression )

shifts al upper case characters to lower case. Characters with an umlaut ()
are handled as specified by the configured environment ( see appendix D ).

TRI M string expression )
righttruncatesall blanks ( space characters) back tothelast nonblank character.
SUBSTR( string expression, position, length)

uses the specified string to produce a substring. The substring starts at the
position specified and continues for the length specified. Note that the first
position of a character stringisO.

Examples of string expressions and functions are shown here:

"M. " & custoners. name
UPPER( " New Text")
TRI M SUBSTR( custoners. nane, 0, 20) & custoners.firstnane)

6.9 Condition Functions

The | F command is used to select one of two possible expressions based on the result of
alogica expression. Several | F commands can be nested or combined with a SELECT
command.

| F( condition, expression, expression)

When the condition is TRUE, then the first expression is activated. If the condition is
FALSE, then the second expression is evaluated. Both expressions must produce a result
of the same data type.

SQL/R A.01.00



6.10 Conditional Expressions 100

SELECT I F (quantity < 100, rebate[O0],
I F (quantity < 500, rebate[1l], rebate[2]))
"actual rebate"
FROM or der s

6.10 Conditional Expressions

Conditional (logical) expressions result in avalue of TRUE or FALSE. These expressions
are part of | F and WHERE commands or HAVI NG rules within the SELECT command.

Only thoseentriesfor which the conditional expressionistruewithinthe SELECT command
are further processed. Conditional (logical) expressions are defined as shown here;

. AND
Conditional _ . .
. =logical operand R logical operand .
Fapression XOR

expression [ NOT ] logical operator expression
expression [ NOT ] BETWEEN constant

AND constant
expression [ NOT ] | N( constant[, ... ])
string expression [ NOT | LI KE "pattern”
( conditional expression )

logical operand

= (equas)

< (less than)
logical _ > (greater than)
operator - <= (lessthan or equa to)

>= (greater than or equal to)
<> (not equa to)

Boolean operators

NOT  (TRUE, when the operand is FALSE)

AND (TRUE, when both operands are TRUE)

OR  (TRUE, when one or both operands are TRUE)
XOR (TRUE, when only one of the operandsis TRUE)

Results of linking with Bool ean operators:

SQL/R A.01.00



Reference

101

operand 1 operand2 AND R XOR
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE

The order of precedence for Boolean operatorsis shown here:

NOT
AND
OR, XOR

Operators of equa value are evaluated from left to right.

A conditional expression consists of a set of comparisons which produce either a TRUE
or FALSE result and which are linked by Boolean operators. Each comparison may itself
consist of aconditional (logical) expression.

In addition to the general comparisons (=, <, <=, >, >=, <>), there are three specia
comparisons, BETWEEN. .. AND, | Nand LI KE.

BETWEEN . .. AND determines, whether or not the value produced by an expression falls
within a specified range.

The operator |1 N produces a value of TRUE when the value produced by an expression
appears in aprevioudy defined list of specific values.

The LI KE operator allowsthe use of wildcardsin string expressions. Each question mark
(?) inthe character string represents one character, an asterisk (*) is used to represent any
number of characters. The specified expression must represent a character string.

SELECT custoner, item FROM orders
VWHERE it em BETVEEN 1000 AND 9000
OR custoner LIKE "Mer";
SELECT custoner, item FROM orders
WHERE item I N (1000, 2000, 3000);

SQL/R A.01.00



6.11 The CLOSE DATABASE Command

102

6.11 The CLOSE DATABASE Command

CLOSE DATABASE;

The CLOSE DATABASE command closes al open databases. This is necessary in order
to be able to specify anew OPEN DATABASE command.

When SQL/R isexited, all open databases are automatically closed.

SQL/R A.01.00



Reference

103

6.12 The CREATE VIEW Command

CREATE VI EWview_name PATH occur_spec path_group
[ DESCRI BE AS "description”] ;

_ [ OCCURRENCE occur_name OF
occur_spec = _ record_name
Ooccur_name =
path_group =TOpath_element [AND path_element [AND...]] [TO...]

path_element = { (path_element path_group) }

occur_spec WHERE fidld_name = [occur_name.] fild_name

The CREATE VI EWcommand is used to define a certain view in the database. Thisview
will build alogical record made up from thefields of varioustables. It exists only logicaly,
and not physically, inthe database.

Each view has a view_name and consists of records from various tables linked by a
hierarchy (called PATH) with common dataitems (fields).

The view created using the CREATE VI EWcommand is treated as if it were area table
where each record contains dl the dataitems (fields) defined in therecords you includedin
the hierarchy.

The PATH rule specifies the access order of the records contained in the view. In addition,
the PATH defines the hierarchy within the view. The PATH follows a line from the first
record to the last record, where records are linked through a common data field. The first
record record_name can be assigned a new name within the view by using either the
OCCURRENCE occur name OF Of occur_name = option.

Several records on the same level of the hierarchy can be linked by using the AND rule. In
some cases, it isnecessary to use parenthesesto preserve the hierarchy intheview. The use
of parentheses is shown in the examples that follow.

The WHERE ruleis used to specify which fields are the common dataitemsto form thelink.

For example:

In thisfirst example, thetables orderhead and orderpos are linked by using
the common item order no.

CREATE VI EWorders

SQL/R A.01.00



6.12 The CREATE VIEW Command

104

PATH or der head
TO order pos WHERE order_no = order_no;

The next example shows a continuation of the hierarchy definition. In this
example, the view is a combination of the records orderhead, orderpos and
items.

CREATE VI EWorders_and_itens

PATH or der head

TO order pos WHERE order _no
TO itens WHERE item no

order _no
i tem no;

The following examples illustrate the branching of a path. The view or-
ders_and_customers consists of linkages of equal priority, namely orderhead
with orderpos and orderhead with customers.

CREATE VI EW orders_and_cust oners

PATH or der head

TO order pos WHERE order _no = order_no
AND custonmers WHERE cust _no = cust_no;

The next example demonstrates how to use parentheses to achieve specific
results.

CREATE VI EWorders_itens_text

PATH or der head

TO (orderpos WHERE order_no = order_no
TOitens WHERE item no = item no)

AND text WHERE text_no = text_no;

In the previous example, orderhead was linked with orderpos, then orderpos
was linked with items, and finally orderhead was linked with text.

CREATE VI EWorders_itens_text

PATH or der head

TO order pos WHERE order _no = order_no
TOitens WHERE itemno = itemno

AND text WHERE text_no = text_no;

SQL/R A.01.00



Reference 105

Inthisexample, orderhead islinked with orderpos, then orderposislinked with
items and finally orderposis linked with text.

In cases wherethere are multiplereferences to the same tablewithin oneline, it
isnecessary to assign an individual name to each occurence of the datarecord.

CREATE VIEWitens_itens

PATH i tens

TO OCCURRENCE naterial OF itens
WHERE item no = material _no;

In this example, the data field material_no of the table items is used for a
second access to the table items. For this second access, the data record is
referenced by the temporary name material.

SQL/R A.01.00



6.13 The DEFINE Command 106

6.13 The DEFINE Command

DEFI NE ["]macro_name["] AS "macro definition”
[ DESCRI BE AS "description” ];

The DEFI NE command enables you to use a short notation ("macro_name") to represent
specific text. These short notations are called macros. During processing the macro is
automatically replaced by its gstringdefinition text.

The macro_name can consist of any words except reserved words, or existing table names,
field names, view names, etc.

Macro names which are enclosed in quotation marks are not expanded.

Macros can be nested so that one macro can reference other macros. The maxi mum number
of nesting levelsis 8 levels.

The maximum length of amacro definition (the text represented by a macro) is511 charac-
ters. To use quotation marks within a macro definition, precede each quotation mark with
abackslash (\).

Example:

DEFI NE cust _fields AS
"custonmers. no, custoners.nanme, custoners.city";
DEFI NE cust _|ist AS
"SELECT cust_fields FROM custoners ORDER BY custoners. no"

Note that the first macro is nested within the second macro definition.

SQL/R A.01.00



Reference 107

6.14 The EXIT Command

EXI T,
The EXI T command ends the SQL /R process.

In abatch file, al lines after the EXI T command are ignored. This feature can be used for
comment lines.

6.15 The HELP Command

HELP [ {identifier | string} ];

The HELP command can be used alone or with an identifier or string. When the
command is used alone, a short description of the SQL/R syntax is displayed. When the
HEL P command isfollowed by an identifier or string, the command showsiif the identifier
or stringisafield, record, view, macro ( stringsonly ) or aias.

When the type represented by the identifier or string is known, you can use the SHOW
command to get complete information about it.

SQL/R A.01.00



6.16 The FIELD Command 108

6.16 The FIELD Command

FI ELD { alias=expression |field_name }

[ VALUES ARE( [ { "string” |num} =]"string" [,...]) ]
[ DI SPLAY AS[LEFT|CENTER|RI GHT ] format ]
[ DESCRI BE AS "description”] ;

(field length)

| NT( field length)

LONG field length)

FLOAT( field length, decimals)

DOUBLE( field length, decimals)

FI XED( field length, decimals)

MONEY( field length [, decimals])

DATE [ ( "date_format" [, fieldlength]) ]
[ FROM{ SYSDATE | YYYY }]

TI ME[ ( fieldlength) ]

format =

The FI ELD command can be used in the following ways:

o to define an aternate name or pseudonym for afield or expression
o to establish avalue for acoded datafield
o to specify the output format of adatafield

You can aso use the DESCRI BE AS ruleto describe fields. This description isdisplayed
by using the SHOW FI EL D command.

6.16.1 FIELD and Expression Pseudonyms

Pseudonymsaredefined usingthe“ alias = expression” parameter of theFl ELDcommand.
The alias isaname that is used to represent an expression in a SELECT command.

In the simplest case, expression isthe name of a data field. You can also use severa
pseudonyms to represent a single data field. Pseudonyms are often used to define more
descriptive names for data fields (i.e. elements of an array ) or to define different output
formats for an item.

SQL/R A.01.00



Reference 109

If you use the FI ELD command to define a pseudonym for a data field, you can use the
VALUES ARE rule. However, you can not use the VALUES ARE rule when defining a
pseudonym for an expression.

Examples:
FI ELD part_nunber = itens.itemno;

FI ELD sal esJanuary = custoners. turnover[0];
FI ELD sal esFebruary = custoners. turnover[1];

FI ELD sal esMay = custoners.turnover][ 4]
DESCRI BE AS "May Sal es";

6.16.2 The VALUES ARE Rule

The VALUES ARE rule alows you to trandate data values in a specified field to other
values.

A coded value is either a character string or anumber (SHORT, | NT or LONG).
A “trandated” value can be defined for each coded value.
The following conditionsapply:
¢ A pseudonym (alias) must be specified for the data field. Accessing this dias will

return the trandated value. A reference to the (original) field name will return the
(untrandated) coded value.

e The DI SPLAY AS rule defines the maximum width of the result.

o Coded values with no specified replacement text are converted to an empty field.
For example:

FI ELD col or = col or num
VALUES ARE (0 = "NONE", 1 = "RED", 2 = "YELLOW, 3 = "BLUE")
Dl SPLAY AS LEFT(7);

In this example, the coded values are used for the dlias color. The colornum data field
remains unchanged.

SQL/R A.01.00



6.16 The FIELD Command

110

FI ELD street = custoners. street
VALUES ARE ("st"= "street", "rd" = "road",
DI SPLAY AS LEFT(10);

FIELD city = custoners.city

VALUES ARE (1 = "New York", "Chicago", "Denver",

"San Francisco", "Seattle",
20 = "Atlanta")
Dl SPLAY AS LEFT(20);

= "drive")

The city field contains a coded vaue between 1 and 20, where value=1 represents “New
York” and value=20 represents “Atlanta’. The vaues 6 through 19 have not been defined.

If the coded value is numeric, you can define a sequence of values and a starting value. If
no starting val ue is defined, then thefirst numeric valueis 0. The remaining numeric values
follow in ascending order from left to right. Alternately, you can define a specific valuein

the list, in which case the next value to theright isincremented by 1.

6.16.3 The DISPLAY AS Rule

The DI SPLAY AS rule defines the output format of the data fields or expressions. The
output of avalue can be defined withintheoutput widthasLEFT justified, CENTERjustified,
or RI GHT justified. If the actual width of avaue iswider than the defined output format,
then the output will be truncated without an error message. The DI SPLAY AS rule is

important for correctly displaying DATE, FI XED, and MONEY values.

The following table illustrates the SQL/R supported data types and their default width,

default number of decimal places and the default justification:

datatype | output width | decimal places | justification |

char string length | — left

short 6 0 right
int 11 0 right
long 11 0 right
float 11 2 right
double 16 2 right

The formats FI XED, MONEY, DATE and TI VE are not available in the HP ELOQUENCE
database. Thereforeitis necessary to define these formatsusingthe Fl ELD. .. DI SPLAY

SQL/R A.01.00



Reference

111

AS command?.

The FI XED datatypes are stored as | NT or LONGvalues. Thereforeit is necessary to use
theDl SPLAY AS FI XED(...) command to define the number of decimal placesin the
output.

The MONEY data types are formatted according to the work environment, which is deter-
mined by the selected language (see Appendix D).

TheDI SPLAY AS DATE ruleis used to define both the input and the output date formats.
Theformat string date_format containsauser specified dateand timeformat (see Appendix
B). The date format string also can contain other user specified text to be output as a date
(e.g. “Today is%d.%m.%y"). If the date format is not defined, the date format defaultsto
thevalue set usingthe SET DATE command. In addition, the output width can be defined.

You can al so use the FROMoptionto definetheformat in which thedateis storedin database.

Syntax Description Datatype

default YYMMDD LONG

FROM SYSDATE | number of seconds since Jan 1,1970 | LONG

FROMYYYY number of dayssinceJan 1, YYYY | SHORT, | NT, LONG

Fields containing a time value in the form HHMM can be displayed using the DI SPLAY
AS TI ME command.

1)t is also possible to define these formats using the format numbers contained in the schemafile or specified
with DBMODS (see Appendix E).

SQL/R A.01.00



6.17 The OPEN DATABASE command

112

6.17 The OPEN DATABASE command

OPEN DATABASE "database’ [ AS "password" ] [,... ] ;

A database must be opened before it can be used. The OPEN DATABASE command is
used to open the database. You can also specify the path and password for the database
using this command.

For example:

OPEN DATABASE "abc";

OPEN DATABASE "/ usr/ pps/ db/ pps";

OPEN DATABASE "/usr/sad/ sad" AS "SECRETARY";
OPEN DATABASE "DBl1" AS "ALL", "DB2" AS "ALL";

Before you open any additiona databases, you must first close al open databases. The
CLOSE DATABASE command is used to do this.

6.17.1 Multiple Databases

When severa databases are open, conflictsin field and table names can occur. For example,
afield called “NR” can occur in severa databases. The same conflict can occur with table
names.

If the same field name occursin severa databases, itisimportant that you awaysreference
the item using both the table name and the field name, so that the correct field isused (e.g.
orders.part_no).

If the same table name occurs in severa databases, SQL/R joins the table name and the
database name using an underline character (). For example, the table CUSTOMERS in
database DB1 isreferenced as CUSTOMERS DBL1.

6.17.2 The QIF File

When a database is opened, SQL/R checks for the existence of a file called database
name. gi f. If this batch file is found, the commands in the batch file are executed.
Therefore you can use this. qi f batch fileto automatically execute certain (e.g. FI ELD)
commands, when the database is opened.

SQL/R A.01.00



Reference

113

The QIF file name must be in the following format:
dat abasenane. qi f oder DATABASENAME. Q F

The name must be either al upper case or al lower case.

SQL /R searches for the existence of a QIF filein the following search order:

database path
path specified through environment variable QPATH
local directory

SQL/R A.01.00



6.18 The REPORT Command 114

6.18 The REPORT Command

REPORT SELECT [ CALCULATE field_calc[,... 1]

TERM NAL
I NTO{ PRI NTER
[ASCI | |DI F]FI LE "filename"

[ report_fmt |
[ USI NG"report_form" ] ;

SUM
AVG
field_calc = MN b (fieldref[,...]) ["rowlabel’]
MAX
COUNT
(fieldref[,...]) | [ SKIP[n]
BREAK ON{ REPORT } [ PAGE [n] ]

report_fmt = [ TI TLE AS"reporttitle"]
[ DATE AS { TODAY | "datestring” } ]
[ LENGTH= num]
[ W DTH=num]

The REPORT command is used to format the results produced by a SELECT command.
A report is created according to the user requirements. The optional rules of the REPORT
command allow you to execute the following functions:

o Caculatefield valuesincluding subtotals and totals

o Direct the output to various output devices

o Format the output using various options

o Create and use specific format files to define the output

6.18.1 The CALCULATE Rule and the BREAK ON Rule

The CALCULATE ruleis used to perform cal culations on the item values of the data fields
retrieved using the SELECT command. Theresultsof the cal culationsare further processed
in the report.

The following cal culations can be used:

SQL/R A.01.00



Reference

115

SUM =the sum of al values
AVG =the average of all values
MAX = the maximum value

M N =the minimum value

COUNT = the number of values

The calculations are specified using arithmetic functions and thefields. Thelist of fieldsis
enclosed in aset of parentheses. These fields are referenced using either the field name or
the position number of thefield as it appears in the previous SELECT command. You can
execute severa calculations within one REPORT command. The individua calculations
are separated by commas. The results of these calculations are displayed in one linein the
order that they appeared in the REPORT command.

The BREAK ON rule alows you to define which fields are used for the calculations. You
specify the field references the same way as in the CALCULATE rule. All results of the
SELECT command are grouped by identical valuesfor the fields defined inthe BREAK ON
command. Each calculation is performed using the values of one of these groups. When
the value of afield in the BREAK ON field list changes, a break occurs and the results of
the calculation are reported. After the results are reported, the calculations are performed
on the next group and these resultsare displayed. To perform acalculaiononall theresults
produced by the SELECT command, use the BREAK ON REPORT rule.

You can also use the BREAK ON ruleto define a line-break or page-break. The SKI P[n]
option advances the report output by n lines. Similarly the PAGE[n] option advances the
report output n pages. |If no number is specified after the SKI P or PAGE option a default
valueof oneisused. The BREAK ONrulealowsyou to defineline and page breaks without
performing any calculations.

If theBREAK ONrulecontainsalist of field references, then the SELECT command should
be ordered by these fields.

When the results of the cal culations are reported, the cal culation function used is displayed
at the end of the line. Thisfunction name can be replaced with your own text which must
be listed directly after the CALCULATE rule.

For example:

The SUM(3) statement isashort way of specifyingatotal. The“3" indicatesthe thirdfield
in the SELECT command (amount) counting from | eft to right.

REPORT
SELECT conpany, orderno, anount, nonth
FROM or ders ORDER BY conpany, nonth

SQL/R A.01.00



6.18 The REPORT Command

116

CALCULATE
SUM 3)
BREAK ON ( nonth, conpany ) SKIP 3,
SUM 3) "Sal es per Company"
BREAK ON ( conpany ) SKIP 3,
SUM 3) "Total Sales"
BREAK ON REPORT PAGE,
COUNT( orderno) "Nunber of Orders”
BREAK ON ( conpany),
COUNT( orderno) "Nunber of Orders”
BREAK ON REPORT;

6.18.2 Output Devices

The default output device is the output device defined using the SET OUTPUT command.
This is generally the screen display. The | NTOrule redirects the output for a particular
REPORT command.

The output devices are described in the SET OUTPUT command section (see page 127).

6.18.3 Number of Lines per Page
The number of lines per page for a specific report can be defined using the SET LENGTH
command. This allowsyou to override the default page length.

If the report isoutput to a screen display, you must hit the RETURN key after each pageto
display the next page.

6.18.4 Output Width

The W DTH rule overrides the default line width for a specific REPORT command. The
function of this command is similar to the SET LENGTH command. Output lines which
are longer than the defined val ue are right-truncated.

If no USI NG rule has been defined, the default line width is used to center the report title
and to right-justify the page number.

SQL/R A.01.00



Reference 117

6.18.5 Output Format

There are two methods for formatting the output produced by a query:

e Using aform fileisdescribed in the next section (the USI NGrule).

o Formatting the page heading of an individual report

You can define areport titleby using the TI TLE ASrule. Thetitleis centered at the top
of each page according to the page width. The individual lines of a multiple line heading
are separated by aslash (/).

For example:

The conmand
TITLE AS "Order Status/All Product G oups/Sorted by Custoners”

produces the follow ng heading:

Order Status
Al'l Product G oups
Sorted by Custoners

You can usethe DATE AS ruletodisplay either the current date (DATE AS TODAY using
the predefined date format) or a specific date format.

The date format can be either a specific date or time format ( see Appendix B ) or a
combination of user defined text and a date ( e.g. “Today is %m/%d/%y").

The output aways beginsin column one of thefirst line of each page.

For example:

REPORT
SELECT conpany, orderno, anount
FROM or der s
CORDER BY conpany
TITLE AS "Order Status/Sorted by Custoners”
I NTO ASCI'| FILE "status. out”
DATE AS "Date: %"

SQL/R A.01.00



6.18 The REPORT Command 118

LENGTH = 72
W DTH = 80;

6.18.6 The Use of Form Files

The USI NGruleisused to specify thetext file containing the output format specifications.
Thistext file, caled a“formfile”, specifies how the results of the REPORT command will
be appear in the output list.

The form file consists of sections, separated by lines, beginning with two percent signs
(%%). The rest of thelineisignored.

The first section defines thetitle, date, and page number. This information appears at the
top of each page.

The second section contains the formatting instructionsfor the output lines resulting from
the SELECT command.

To alow for calculations, theform file containsa"break" section for each BREAK ONrule.
This break section defines the output of the calculated values. These break sections must
appear inthe same order in the form file as the corresponding BREAK ONrule lines appear
in the REPORT command.

You can aso define an “end” section in the form file. The text defined in the end section
will appear at the bottom of each output page.

Field values are defined in the form file by using either the field name or the field position
number of the SELECT list. Field values are preceded by the @ character (eg. @2 or
@custno).

The field contents of the SELECT command can be referenced in the first and second
sections. The valuesin the heading section are alwaysthe actual vaues at thetimethat the
heading is printed. The valuesin the second section are printed separately for each record
resulting from the SELECT command.

The field references of the "break" sections must be consistent with the field references of
either the corresponding function or break conditions of the BREAK ON rule. The break
section isoutput whenever the corresponding BREAK ON occurs (i.e. whenanew groupis
output ). A corresponding SKI P or PAGE command is executed as defined in the section.

In addition, there are three specia functions related to form files. These functions are the
$page, $dat e and $n functions.

SQL/R A.01.00



Reference

119

A $page reference specifies that a sequential page number is output for each page. The
$page reference can be used in either the page header or the page footer. Page numbers
can be up to four characters in length and are | eft justified.

The $dat e reference specifies that a date is output. This reference can appear in any
section of theform file. The date format can be defined withthe DATE AS date_format
rule, provided that the date format is defined before the USI NG rule is specified. If no
date format is specified withthe DATE AS rule, then the date format defined with the SET
DATE command is used.

A $n reference represents the argument specified either in the command line or the RUN
command. Thisisimportant for specifying condition values, ranges and comments.

First, the REPORT command:

REPORT

SELECT nane, street, zip, city, orderno, ordate, anount
FROM or der s
ORDER BY 1, orderno

CALCULATE

COUNT(5) BREAK ON (1),
SUM 7) BREAK ON (1) PAGE
USI NG "sal es. frnt

These commands usetheformfile“sal es. f r ni'. The contentsof thisform fileare shown
here;

$dat e Li st of Orders $page
Sorted by Custoners
Custonernane...: @ Street........: @
Zip Gty......: @ @
Order no Dat e Sal es ampunt in $

%% End of the page heading section

@rderno @ @unount
%% End of the detail |ine section

SQL/R A.01.00



6.18 The REPORT Command 120

Nurmber of Orders: @

%% End of BREAK section relating to COUNT(5)
Val ue of Orders: @

%% End of BREAK section relating to SUM7)

SQL/R A.01.00



Reference

121

6.19 The RUN Command

[ RUN] file_name [ ("arg" [, "arg"1... ) I;

The RUN command is used to execute a QRF (Query Routine File) within SQL/R. These
QRFfilesare ASCI| text fil es containing one or more SQL /R commands. They are executed
as batch files and use the foll owing naming convention:

nameqgrf or NAME.QRF

The file name must be either all lower case or all upper case.
SQL /R searches for the QRF file in the following search order:

database path
environment variable QPATH
local directory

The use of the RUN command is optional; only the QRF file name is needed to execute the
QRFfile.

Arguments can be specified as text strings enclosed in quotation marks. When multiple
arguments are used, these arguments are separated by commas. Inthe. gr f file, arguments
are referenced by a $n, where n represents the number of the n-th argument in the list.
When a QRF file is executed, each $n is replaced by the corresponding string passed as a
parameter.

QRFfiles can be nested, but secondary QRF files can only reference the arguments used by
the primary QRFfile.

The following exampl e shows the contents of the QRF file “test.qrf”:

SELECT nunber, nane, city FROM custoners
WHERE city LIKE "$1";

This QRF file can be executed as shown here:

RUN test ( "Dallas*" );

SQL/R A.01.00



6.19 The RUN Command 122

This produces the following SQL/R command:

SELECT number, name, city FROMcustomers
VWHERE city LI KE "Dallas*";

SQL/R A.01.00



Reference 123

6.20 The SELECT Command

SELECT [ALL |DI STI NCT]
{* | expression ["alternate_heading"] [, ...] }
[ FROMview_name ]
[ WHERE cond_expression ]
[ GROUP BY col_ref [,...] [ HAVI NGcond_expression] ]
[ ORDER BY col_ref [ASC|DESC] [, .. .11 ;

The SELECT command is used to select specific data from a table or view. Each output
line corresponds to aretrieved table or view entry. Each column contains the result of a
data field or expression of atable or view entry.

The selected data fields are listed after the SELECT or SELECT DI STI NCT command
and are separated by commas. An expression can be the name of a data field, alias, or
expression ( consisting of datafieldsused inaview ). The actual construction of arithmetic
expressions and character strings are described on pages 95 and 98.

A SELECT command can contain a maximum number of 64 data fields. To select dl the
fields of aview, you can use an asterisk (* ) instead of listing all thefields. The fields of an
array are accessed using an index. If only the name of the array is specified, by default the
first field isused.

The SELECT command output appears in page format according to the page length defined
with the SET LENGTH command. The page heading contains the page number and
column headings, where the column headings consist of either a specified heading or the
alternate_headings. The output width of a column is controlled by the maximum width
defined by the field length or column heading.

6.20.1 The DISTINCT Rule
The DI STI NCT rule specifies that duplicate output lines are reported only once. Use of
thisrule results in alonger processing time, because the output is first sorted to locate al

duplicate entries. The Dl STI NCT rule can aso beused in calculations. Itisimportant that
only one Dl STI NCT ruleis used in each SELECT command.

6.20.2 The FROM Rule

The FROMrule is used to define the data table used for the selection. This table can be
either a data record or a virtua table which has been created using the CREATE VI EW

SQL/R A.01.00



6.20 The SELECT Command 124

command.

SELECT custno, nane, city FROM custoners
VWHERE city LIKE "Dallas*";

Access to thetable is sequentidl, regardless of whether the table is adata record or thefirst
table of aview. Access to al subsequent tables in the view depends on the path definition
of the CREATE VI EWcommand. You can specify that the access is performed using a
key field. Thiswill optimize the actions of the WHERE command which sorts, groups, and
evaluates the entries.

6.20.3 The WHERE Rule

The WHERE rule is used to set conditions for the data selection. The actua format of
the conditional expressions which contain the comparison of data fields and constants, is
described on page 100.

SELECT custno, nane, city FROM custoners
WHERE nane IN ("Brown","Snith","Jones");

6.20.4 The GROUP BY Rule

The GROUP BY rule is used to group output lines which contain identical values in the
specified columns (col _re f). The other columns of each output line have either a constant
value or arethe result of acalculation (e.g. SUM MAX). These lines are the result produced
by the SELECT command. The column reference can be either afield name, an dlias, or a
number which refers to the position of thefield in thelist of the expressions.

SELECT city, SUM sal es), AV sal es)
FROM cust oner s
GROUP BY city;

SQL/R A.01.00



Reference

125

6.20.5 The HAVING Rule

The HAVI NGruleis similar to the WHERE rulein that both are used to define which result
lines fit certain conditions (filtering). The conditions specified with the HAVI NGrule are
processed after the action of the GROUP BY command. The conditional expressions are
described starting on page 100.

SELECT city, SUM sal es), AV sal es)
FROM cust oner s

GROUP BY city

HAVI NG SUM sal es) > 100000. 00;

6.20.6 The ORDER BY Rule

The ORDER BY rule is used to sort the results of the SELECT command. The results
are sorted by the values contained in the columns defined using the ORDER BY rule. In
addition, you can define whether the output is sorted in ascending (ASC) or descending
(DESC) order. The default isascending order. The columns are referenced in the same way
asinthe GROUP BY rule. The columns are processed in the order in which they appear in
the command (from left to right).

SELECT * FROM cust oners ORDER BY nare;

SELECT city, SUM sal es), AV sal es)
FROM cust oner s

GROUP BY city

HAVI NG SUM sal es) > 100000. 00
ORDER BY SUM sal es);

SELECT custno, name, city, sales

FROM cust oner s
ORDER BY 3, sal es DESC;

SQL/R A.01.00



6.21 SET Commands

126

6.21 SET Commands

6.21.1 SET DATE

SET DATE="date_fmt" ;

The SET DATE command controls the definition of a standard date format. The format
string date_format contains either a specific date and time format (see Appendix B) or
user defined text and the date (e.g. “Today is %m/%d/%y").

This standard format is the default date format when no other date format is specified in a
report.

The default date format is the american date format:

MM/DD/YY

6.21.2 SET LENGTH

SET LENGTH=lines ;

The SET LENGTH command is used to set the number of lines per page. The default is
24 lines (screen output) per page. This value determines where the page breaks appear in
the output. The page breaks apply to the results of the SELECT and REPORT commands
as wdll as the SHOWcommands ( SHOW FI ELD, SHOW VI EW and SHOW MACRO.

If the output is sent to the screen, the <RETURN> key is used to view the output page-by-
page. If the output is sent to a printer or file, an automatic form feed is executed.

To temporarily override this default page length, use the LENGTH rule within the REPORT
command.

To avoid diaplying a page header and page number, set the page length to zero using the
SET LENGTH =0 expression.

6.21.3 SET LOCALE

SET LOCALE "category=languagel @modifier]" ;

SQL/R A.01.00



Reference

127

ALL
COLLATE
CTYPE
MONETARY
NUMERIC
TIME

The SET LOCALE command isused to set aloca condition (e.g. language)
The defaults shown here define the SQL /R environment.

category =

Scope Environment Action Target

ALL LANG all subsequent
COLLATE LC_COLLATE not currently used
CTYPE LC_CTYPE characters typzierung

MONETARY | LC_.MONETARY | MONEY output
NUMERIC LC_NUMERIC mumric outpur
TIME LC_TIME date field output.

6.21.4 SET OUTPUT

[ASCI | | DI F] FI LE "filename"

The SET OUTPUT command is used to define the output device (and firmat). Possible
devices are screen, printer, or (disk)file. The default device is TERM NAL (stdout). The
printer used depends on the SET PRI NTER rule. Output sent to adisk fileis stored as it
would appear on the screen, namely in the page headings and page numbers. In addition,
supported output formats included ASCII and DIF. This enables you to export the data to
another application.

TERM NAL
SET OQUTPUT =< PRI NTER ;

6.21.5 SET PRINTER

SET PRI NTER= device;

TheSET PRI NTERcommand isused to definethedefault printer. If no printer isspecified,
the default printer is| p. The printer defined with the SET PRI NTER command is the
printer that is used whenever the SET OUTPUT = PRI NTER or REPORT ... | NTO
PRI NTER expression is used. To send output directly to the printer (without using the
spooler), usethe SET OUTPUT = FI LE file_name to define the devicefile.

SQL/R A.01.00



6.21 SET Commands 128

SET PRINTER = "I p -dlj -onb -ol 72";
SET PRI NTER = FILE "output";
SET PRINTER = ASCI| FILE "output"”;

6.21.6 SET WIDTH

SET W DTH= columns;

TheSET W DTHcommand isused to definethenumber of columnsfor an output page. The
default is 80 columns. Output lines which are longer than 80 columns are right-truncated.
The title centering and page number position for a page are based on thisvalue.

SQL/R A.01.00



Reference

129

6.22 SHOW Commands

6.22.1 SHOW DATE

SHOW DATE;

The SHOW DATE command displays the current date format. Thisformat can be changed
using the SET DATE command.

6.22.2 SHOW FIELD

SHOW FI ELD { * | field_name };

The SHOW FI ELD command displays information about data fields and aliases for the
database currently open. If an asterisk (*) is used with the SHOW FI ELD command,
all database items and aliases and their corresponding table names are displayed. Also
displayed is the description that was defined with the DESCRI BE AS rule of the FI ELD
statement. The SHOW FI ELD ficld_name displays al the relevant information about a
field, including the following:

o thealias and its corresponding field or expression

the field description defined using the DESCRI BE AS rule of the FI ELD statement
o the database definition

the output format

an indication of the activity of the coded-value-trand ation

o listsof tables and viewsfromwhich field_name can be selected

6.22.3 SHOW LENGTH

SHOW LENGTH,;

The SHOW LENGTH command displays the number of lines configured for a page. This
page length is set using either the SET LENGTH command or the LENGTH rule within
the REPORT command. A page length defined with the LENGTH rule will temporarily
(within the REPORT command) override the page length defined with the SET LENGTH
command.

SQL/R A.01.00



6.22 SHOW Commands 130

The page length value is used by SQL /R to control the page breaks.

6.22.4 SHOW LOCALE

SHOW LOCALE;

The SHOW LOCALE command displayseither thevalues set withthe SET LOCALE com-
mand or the default values. The default values depend on the user environment.

6.22.5 SHOW MACRO

SHOW MACRO{ * | "macro_name" };

The SHOW MACRO command followed by a "macro_name" displays the definition and
description of a macro. The "macro_name" is a character string enclosed in quotation
marks. If the SHOWV MACRO command is followed by an asterisk (*), then al the macros
arelisted.

6.22.6 SHOW OUTPUT

SHOW QUTPUT;

The SHOW QUTPUT command displays the name of the output device which was defined
using the SET OUTPUT command. The default device is the screen. The output device
can be redefined using the SET OUTPUT command. In addition, you can use the | NTO
rule of the REPORT command to define a different output device for a specific report.

6.22.7 SHOW PRINTER

SHOW PRI NTER,

The SHOW PRI NTER command displaysthe same of the default printer. Output is sent to
this printer whenever the SET OUTPUT = PRI NTERor aREPORT ... | NTO PRI NTER
statement isused. You can usetheSET PRI NTER command to redefinethe default printer.

SQL/R A.01.00



Reference 131

6.22.8 SHOW VIEW

SHOW VI EW{ * | view_name };

The SHOW VI EWcommand displays information about al record types and views which

are defined for the currently in use database, or which were produced using the CREATE

VI EWcommand. [f the SHOW VI EWcommand is followed by an asterisk (*), then all

record types and viewsare displayed with the description defined using the CREATE VI EW
command.

When a record type or view is specified, then detailed information is provided about the
following:

e View type
e description

¢ name and type of al fieldsin the record

SQL/R A.01.00



6.22 SHOW Commands

132

6.22.9 SHOW WIDTH

SHOW W DTH;

The SHOW W DTHcommand displaysthe number of columnsin apage. The default is 80
columns. Thisvaluecan be changed usingthe SET W DTHcommand. Output lineswhich
are wider than the defined width are right-truncated. The report title and page number
position are centered using the value of the page width. The page width for a specific report
can be changed using the W DTH rule of the REPORT command.

SQL/R A.01.00



Quick Reference Guide

CLOSE DATABASE;

CREATE VI EWview_name PATH occur_spec path_group
[ DESCRI BE AS "description”] ;

_ [ OCCURRENCE occur_name OF
occur_spec = _ record_name
Ooccur_name =
path_group =TOpath_element [AND path_element [AND...]] [TO...]
_ | (path_element path_group)
path-element = { occur_spec WHERE fidld_name = [occur_name.] fild_name

DEFI NE ["]macro_name["] AS "macro definition”
[ DESCRI BE AS "description”] ;

EXIT;
FI ELD { alias=expression |field_name }

[ VALUES ARE( [ { "string” |num} =]"string" [,...]) ]
[ DI SPLAY AS[LEFT|CENTER|RI GHT ] format ]
[ DESCRI BE AS "description”] ;

(length)

| NT( length)

LONE length)

FLOAT( length, decimal places)

DOUBLE( length, decimal places)

FI XED( length, decimal places)

MONEY( length [, decima places])

DATE [ ( "dateformat" [, length]) ]
[ FROM{ SYSDATE | YYYY }]

TIME] ( length) ]

format =




Quick Reference Guide 134

HELP [ { identifier | "string"} ] ;

OPEN DATABASE "database name" [ AS "password" | [,... ] ;
REPORT SELECT [ CALCULATE field_calc[,...]]

TERM NAL
I NTO{ PRI NTER
[ASCI | |DI F]FI LE "filename"

[ report_fmt |
[ USI NG"report_form" ] ;

SUM
AVG
field_calc = MN b (fieldref[,...]) ["rowlabel’]
MAX
COUNT
(fieldref[,...]) | [ SKIP[n]
BREAK ON{ REPORT } [ PAGE [n] ]

report_fmt = [ TI TLE AS"reporttitle" ]
[ DATE AS { TODAY | "datestring” } ]
[ LENGTH= num]
[WDTH= num]

[ RUN] filecname [ ( "arg" [, "arg"] ...) ] ;

SELECT [ALL |DI STI NCT]
{* | expression [ "dternate_heading" ] [, ...] }
[ FROMview_name ]
[ WHERE cond_expression |
[ GROUP BY col_ref [,...] [ HAVI NGcond_expression] ]
[ ORDER BY col_ref [ ASC|DESC] [, ...1] ;

SET LOCALE "category=languagel @maodifier]" ;

SQL/R A.01.00



Quick Reference Guide

135

ALL
COLLATE
CTYPE
MONETARY
NUMERIC
TIME

category =

SET DATE = "date_fmt" ;

TERM NAL
SET OQUTPUT={ PRI NTER ;
[ASCI | | DI F] FI LE "filename"

LENGTH  =lines
SET { PRI NTER ="device" ;
W DTH = columns
DATE
FI ELD{ * | field_name }
LENGTH
LOCALE
SHOW< MACRO{ * | "macro_name” } 3 ;
QUTPUT
PRI NTER
VI EW] * | view_name }
W DTH

SQL/R A.01.00



B

Date and Time Formats

A date format isaformatting command consisting of text and format codes. A format code
is preceded by a % character:

Code | Length | Description |

%a 2 | day-of-week (short a phabetic notation)
%A 10 | day-of-week (a phabetic)
%b 5 | month (short a phabetic notation)
%B 10 | month (a phabetic)
%cC * | dateandtime
%d 2 | day-of-month (01-31)
%H 2 | hour (24 hour clock) (00-23)
%l 2 | hour (12 hour clock) (01-12)
%j 3 | day-of-year (001-366)
%m 2 | month (numeric notation) (01-12)
%M 2 | minutes (00-59)
%p 2 | AM or PM (if necessary)
%S 2 | seconds (00-59)
%U 2 | week-of-year (00-53)
(thefirst sunday of ayear isthefirst day of week 1)
%w 1 | day-of-week (numeric) (O(sunday)—6)
%W 2 | week-of-year (00-53)
(the first monday of ayear isthefirst day of week 1)
%X * | date
%X * | time
%y 2 | year (last two digitsonly) (00-99)
%Y 4 | year (4 digits)
%Z 4 | timezone (if necessary)
%% 1 | %-character

In the previous table, the specifications for the column length are the default length used
by SQL/R if no other values are specified. These values are not required to correspond
with the actual lengths. If the actual length islonger than the speciified length, the output
isright-truncated.



Date and Time Formats

137

The codes having alength marked with an asterisk (*) in the table have lengths which are
dependent on the work environment.

In addition, it is aso possible to include length and adjustment specifications between the
"%" character and the format code. These specifications are shown here;

[—10] n

SQL/R A.01.00

Then representsanumber specifying theminimum field length of theformatted
output. Thisoutput isthen left or right justified. By default, the output is right
justified with leading spaces. |f the option — isused, the resulting output isleft
justified with trailing spaces. If the zero 0 option is used, the resulting output
isright justified with leading zeros.

For numeric output, (%d, %H, %I, %j, %m, %M, %S, %U, %w, %W, %y,
%Y), the .p represents the minimum number of characters. If the result has
fewer digitsthan the minimum, leading zeros are added.

If the output produces a character string, (%a, %A, %b, %B, %c, %p, %X, %X,
%Z, %%) then .p represents the maximum number of characters. If theresult
has more characters than the maximum specified, the result is right-truncated.



Date and Time Formats 138

Examples:

| Format | Result | Comment
%A September no length specified
%.3A Sep maximum length = 3 characters
%d.%m.%y 08.05.92 no length specified
%.1m/%.1d/%y 5/18/92 minimum length = 1 (month, day)

%3d.%-3m.%05y 85 .00092 | day and month use a minimum length of 3,
day is right justified, month is left justified,
minimum length for year is 5 characters with
leading zeros.

If the work environment has been defined with a LOCALE “TIME=german” command, the
following formats are pre-defined:

| Code | Format | Example |
%cC %a., %d. %b %Y, %H:%M:%S | Fr., 08. Mai 1992, 10:28:05
%X %a., %d. %b %Y Fr., 08. Mai 1992
%X %H:%M:%S 10:28:05

If the work environment has been defined with a LOCALE “TIME=american” command,
the following formats are pre-defined:

| Code | Format | Example |
%cC %a, %b %1d, %Y, %I:%M:%S%p | Mon, May 8, 1992, 10:28:05 AM
%X %a, %b %1d, %Y Mon, May 8, 1992
%X %l : %M :%S %p 10:28:05PM

Date format consists of a maximum of 70 characters. This 70 character maximum applies
to both the format codes and the resulting text.

The time formats are only significant in conjunction with date variables defined using
the system format for defining dates (where the date format is calculated by counting
the number of seconds since Jan 1, 1970). This also applies to fields defined using the
FI ELD... DI SPLAY AS DATE... FROM SYSDATE statement or REPORT ... DATE
AS statement.

SQL/R A.01.00



C

Differences between SQL/R and standard
SQL

The SQL/R language is based on standard SQL. However, there are differences which are
the result from the distinct goals of the two languages. These differences are described
here:

e SQL/R only reads data from a database. Database changes or deletions are not
possible.

¢ SQL/R supportstheuse of Arrays. Standard SQL does not support the use of Arrays.

¢ Thestandard SQL functions CHAR, LENGTH, DATE, DAYS, Tl ME, HOUR, M NUTE,
and SECOND are not supported with SQL/R.

¢ SQL/R containsthe additional functions UPPER, LONER, TRl Mand STRLEN.

e The CREATE VI EWcommand is handled differently by the SQL/R language and
standard SQL . Both the syntax and action of the command are different.

e The SELECT command of SQL/R does not include the full functionality of the
standard SQL SELECT command. Thereis no UNI ON option and no subselect. In
addition, it is not possibleto access severa tables within one SELECT command. To
do thisusing SQL/R, you usethe CREATE VI EWcommand to create aview before
using the SELECT command. The ORDER BY rule can only be used for columns
which are listed (referenced) within the SELECT command. Sorting of filds which
are not produced is a so not possible.

e SQL/R contains a number of functions which are not included in standard SQL.
These functions are designed especially for formatting lists. These functions are
provided using the REPORT, FI ELD, RUN, SET, and SHONcommands.



D

Work Environment

Using environment variables you can define the work environment; specifically to adjust
programs to your needs. The following section describes the environmental variables used

by SQL/R.

Environmental variables are HP-UX Shell variables which can be accessed by other pro-
grams. The commands described in the following section are used to set the environmental
variables.

For example:

LANG=aneri can
export LANG

These commands set the HP-UX shell variable LANGto the value aner i can and gives
other programs access to this variable.



Work Environment

141

SQL /R uses the following environmental variables:

Variable Short Description

TERM terminal type

LINES number of lines (if different)

COLUMNS number of columns (if different)

LANG language and language environment
LC_COLLATE collating sequence (if different)

LC_CTYPE character type (if different)
LC_MONETARY | output format for MONEY (if different)
LC_NUMERIC numeric output format (if different)
LC_TIME date/time output format (if different)
QPATH list of directoriescontaining files for SQL/R
TZ time zone

LPDEST output device for Ip (alternate to standard printer)
TMPDIR directory for temporary files

These environmental variables are described in detail in the following sections. For addi-
tional information, use the following HP-UX shell command:

man 5 environ

Description of the environmental variables:

QPATH

LANG

SQL/R A.01.00

QPATH contains alist of directories which SQL/R searches for the qif,
grf and form files, if the pathname was not specified in the program. For
example if afilename was specified without aleading slash (/).

The directoriesin thelist are separated by a colon (:).

For example: / sql r:/usr/sqglr/sanmple

searches inthedirectories/ sql r and/ usr/ sql r/ sanpl e.

The LANG variable sets the defaults for language and character set (for

example, the use of characters uniqueto a specific language). The values
for LANG are specified in english (see| ang( 5) ).

If no LANG value is specified, a default of english (with no specia
characters) isused.

The Editor program, screen messages and function key labels are deter-
mined by the LANG variable.



Work Environment 142

LC....

SQL/R A.01.00

LC_COLLATE,LC_CTYPE,LC_MONETARY,LC_NUMERICandLC_TIME.
These LC_... . variables allow you to specify the country-related defaults
which deviate from the values predetermined by the LANG variable.

If these variables are not set, then an appropriate default valueis provided
by the LANG variable. You can aso set default values for these variables
usingthe SET LOCALE command within SQL/R.

LC_COLLATE,LC_CTYPE,LC_.MONETARY,LC_NUMERICandLC_TIME
can be set using the following format:

| anguage [ @modifier]

The @modifier field alows you to set a different vaue for a specific
variable while keeping the remaining default values for that language.
An example would be setting a different collating sequence. You can use
the man pages of nl si nf o(1) to obtainalist of the possible values.

For example, to configure german screen messages, but use the dutch
names for the months you set the following variabl es to the val ues shown
here:

LANG=ger man
LC_TI ME=dut ch



Work Environment

143

TERM

COLUMNS

LINES

TZ
LPDEST

TMPDIR

SQL/R A.01.00

Variable Changes/Defines

LC_COLLATE Collating sequence.

Thisvariableisused to set thecoll ating sequence.
Note: It iscurrently not used.

LC_CTYPE Character type.

This variable is used to define which charac-
ters are treated as alphabetic characters and how
lower and upper case characters can be changed.
LC_MONETARY | Monetary output format.

This variable is used to define how monetary
amounts are displayed. For example, how many
decimal places are displayed and how money is
grouped.

LC_NUMERIC Numeric output format.

This variable is used to define the numeric out-
put format. For example, whether a period or a
comma preceeds the decimal places.

LC_TIME Date field output format.

This variable is used to define the output for-
mat for date information such as day and month
names.

The TERM variable defines the terminal type. Thisis required because
SQL /R supports specific termina types.

The COLUMNS variabl e defines the number of columns for theterminal
display. If no valueis specified, a default value of 80 characters per line
isused.

The LINES variabl e defines the number of lines for the terminal display.
If no valueis specified, adefault value of 24 linesis used.

The TZ variable defines the time zone.

The LPDEST variable is used to define the name of the default printer
used by thel p command. This printer isused if no aternate printer was
defined using option- d.

If no valueis specified, the standard printer for that system is used.

The TMPDIR variable defines the directory used for temporary files. If
no valueis specified, the directory / t np isused.



E

HP Eloguence Format Numbers

The HP Eloguence format numbers are defined for a database by either the schena or the
dbnods utility. These numbers are then used by HP Eloquence QUERY to evauate and
format data. When SQL /R opensadatabaseit trand atesthese numberstothe corresponding
format.

The HP Eloguence format numbers are cumulative codes. For each group or attribute, a
code value is added.

| Group | Value | Comments |
Query Writeinhibit
No write inhibit (default) 0 | (ignored)
Writeinhibit 1 | (ignored)
Item type
Date type 2 | DATE (FROM 1972)
Currency 4 | MONEY
Undefined 6 | (ignored)
Spacing
Default 0 | (ignored)
Commaevery 3 digits 8 | (ignored)
Post decimals
Default 0 | (ignored)
FIXED 0 16 | (1)
FIXED 1 32| (1.0
FIXED 2 48 | (1.00)
FIXED 4 80 | (1.000)
FIXED 3 64 | (1.0000)
FIXED 5 96 | (1.00000)
FIXED 6 112 | (1.000000)

For the item types MONEY and DATE, al further entries are ignored.

The number of decimal places ( post decimals ) are recognized for floating point decimal
data types ( float, double) only.



HP Eloquence Format Numbers 145

Examples:
Date=2

Money =4
Value with 2 decimal places = 48

SQL/R A.01.00



-

Glossary

This appendix provides definitions and explanations for many of the terms and expressions
used in thismanual.

ARGUMENT
An independent variable

ARITHMETICAL EXPRESSION
Containsarithmetical operations and operatorswhich result in asingle numeric value

ARITHMETICAL OPERATOR
A symbol used to represent a mathematical operation. For example:
+ = Addition
— = Subtraction
* = Multiplication
/ = Division
ARITHMETICAL OVERFLOW
Represents aconditionthat occurswhen theresult of acal culation exceeds thedefined
boundaries of the value range.
ASCII
Acronym for “American Standard Code for Information Interchange’. Thisis a
common standard for informati on exchange.
BYTE
Represents a standardized unit of data. A byte consists of 8 bits. A byteis required
to store one ASCI| character.
CHARACTER SET

Defines al the possible characters which can be used in a data field. The possible
characters are defined by the data type of thefield.



Glossary 147

CHARACTER STRING

A sequence of characters. Character strings are enclosed in quotation marks.
COLUMN

A dataitem (field) of a data structure within a database.
COLUMN NAME

The unique name assigned to a column or field within a database table.

COMMAND
Generdly, an instruction to the operating system. The term “STATEMENT” is
another term for an SQL/R instruction.

COMPARISON / RELATIONAL OPERATORS
Symbols such as =, > and < that indicate the rel ationship between two val ues.

CONSTANT
A fixed, constant value. The opposite of avariable.

DATABASE

A collection of related data which is stored together. A database is used to store
the data of one or more applications in an optimal form without disadvantageous
or unnecessary redundancy. The data is stored independently of the application
programs which use the data. The programs have a common, controlled access to
the database by using a database language such as SQL. Depending on the database
language used, you can add, modify, or delete database entries.

DATABASE DEFINITION

A description of the storage format, tables and columns of an individual database.

DATA TYPES

All theavailabletypesused to produce a column. SQL /R supportsthefollowing data
types:
CHAR, SHORT, INT, LONG, FLOAT, DOUBLE, DATE, FIXED, MONEY and
TIME

DEFAULT
The attribute, value, option, or setting used if no other valueis specified.

SQL/R A.01.00



Glossary

148

DEFINE

Represents an SQL/R command. The DEFI NE rule can be used with other SQL/R
commands to define short notations and place holders (macros).

EXIT

The SQL/R command which isused to end an SQL /R process. All commands after
the EXI T command in afile areignored.

EXPRESSION

Thisis either an operand or a combination of operands and operators which results
inasinglevalue.

FIELD

Another representation of columns in a database table, aso referred as ITEMs or
DATA FIELDs.

FIELD COMMAND

An SQL/R command that has several uses. For example, the FI ELD command can
be used to define an aternate name for fields and expressions or to specify the output
format of datafields. It can aso be used to set valuesin reference to coded datafields.

GROUP BY
A rulewithin the SELECT command which is used to create groups.

HAVING

A rule within the SELECT command which is used to filter out selected individual
results of the GROUP BY rule. Thisrule can only be used in combination with the
GROUP BYrule.

HELP

Displaysinformation about the meaning of anidentifier, suichasaFIELD, RECORDS
or MACRO. You can get additiona information about each of these identifiers by
using the appropriate SHOWcommand along with the identifier.

INDEX

A collection of data about the position of records within a table. These index keys
enable faster access to the data.

LINE

A horizontal entry in a database table. The terms RECORD or DATA LINE are aso
used.

SQL/R A.01.00



Glossary 149

MATHEMATICAL FUNCTION

Functions used on the columns of a datarecord. For example: AVG, COUNT, MIN,
MAX, SUM.

OBJECT
An object isatable, view, or index.

ORDER BY

A rule used wthin the SELECT command to specify the sort order of the SELECT
command results.

PARAMETER

Information or data given to a command or function which affects the results of the
command or function. Parameters can be specified by either a user or a program.

RECORD
A database entry. A record isarow in adatabase table. A record consists of fields.

REPORT

The REPORT command and the SELECT command are the most important SQL/R
commands. The REPORT command displays the results produced by the SELECT
command.

RESULT TABLE
A quantity of result lineswhich are produced by a SELECT command.

RULE

A syntactically separate part of an SQL/R command. This part is identified during
the syntax analysis of the entire command.

SELECT

The SELECT command is the most important SQL/R command because it is used
to define the data to be retrieved from the database. Rules are part of the SELECT
command and used to further definethe datato be returned by the SELECT command.

SET
Used to set defaults such as page length and width.

SHOW
Used to display detailed information about objects such asfields, records, and views.

SQL/R A.01.00



Glossary

150

SQL
Abbreviation for “ Structured Query Language’. Thisisagenera term for adatabase
query language such as INGRES or INFORMIX. Structured query languages are
used to create and use relational databases.

STATEMENT
An ingtruction used in a high level language such as SQL/R. Examples are the
SELECT and REPORT commands.

STRING
A sequence of characters (character string).

TABLE

A relative (relational) object in which dataisstored. A table containshorizontal lines
(also caled RECORDs or datalines) and vertical columns (also called FIELDS).

VALUE
Is ameasurable item assigned to a constant, avariable, or a parameter.

VARIABLE
A data unit, such as a number, which is defined in ahigh level language and used to
assign avalue. Examples are: singlecharacters or a dataline structure.

VIEW
An SQL/R command used to define alogical table which presents a specific view of
existing physical tables of a database.

WHERE

A rule within the SELECT command. Thisruleis used to establish conditions for
the desired results of a SELECT command.

SQL/R A.01.00



Index

* 101,123

.qif, 112

qrf, 121

5, 10

$, 66

$date, 63, 118, 119
$n, 66, 67

$page, 63, 118, 119
&, 55

A

Alias, 89

ALL, 95, 97,123, 134

AND, 16-18, 21, 79, 80, 100, 101, 103, 133
Array, 88

ASC, 22,123, 125, 134

ASCII, 114,127,134, 135

AVG, 27, 95, 96, 114, 115, 134

B

BETWEEN, 16, 21, 100, 101

BREAK ON, 60, 73, 74, 114, 115, 118, 134
BREAK ON REPORT, 60, 73, 115

c

CALCULATE, 58, 60, 63, 71-73, 84, 97,114,
115,134

CENTER, 108, 110, 133

CLOSE DATABASE, 102, 112, 133

COUNT, 27, 28, 60, 74, 95, 97, 114, 115, 134

CREATE VIEW, 75-81, 84, 88, 89, 103, 123,
124,131, 133, 139

D

Data Types, 91

Dataset, — Table

DATE, 91, 108, 110, 133, 135, 138, 144
DATE AS, 58, 63, 114, 117, 119, 134, 138

SQL/R A.01.00

DATE ASTODAY, 117

DAY, 95, 97

DEFINE, 106, 133, 148

DESC, 22, 72, 123, 125, 134
DESCRIBE AS, 103, 106, 108, 129, 133
DIF, 114, 127,134, 135

DISPLAY AS, 65, 71, 84, 108-111, 133, 138
DISPLAY ASDATE, 94, 111

DISPLAY ASFIXED, 111

DISPLAY ASTIME, 111

DISTINCT, 24, 28, 95-97, 123, 134
DOUBLE, 108, 133

E
Entry, — Record
EXIT, 71, 74, 107, 133, 148

F

Field, 88

FIELD, 55, 65, 71, 72, 76, 82, 84, 89, 91, 94,
108-110, 112, 129, 133, 135, 138,
139, 148

Field Reference, 88

FILE, 114,127,134, 135

FIXED, 91, 108, 110, 111, 133

FLOAT, 108, 133

FROM, 12, 14, 53, 108, 111, 122, 123, 133,
134

FROM SYSDATE, 111, 138

G

GROUP, 56

GROUPBY, 12, 32, 33, 71, 74, 84, 97, 123—
125, 134, 148

H
HAVING, 32-34, 100, 123, 125, 134
HELP, 107, 134



INDEX

152

IF, 71, 72, 95, 98-100

IN, 16, 20, 100, 101

INT, 108, 109, 111, 133
INTO, 114, 116, 130, 134
INTO PRINTER, 61, 127, 130
Item, — Field

L
LEFT, 108, 110, 133

LENGTH, 60, 114, 126, 129, 134, 135
LIKE, 16, 29, 31, 100, 101, 122
LOCALE, 93, 135, 138

LONG, 108, 109, 111, 133

LOWER, 98, 99, 139

Ip, 127, 143

M

MACRO, 135

MAX, 27,95, 96, 114, 115, 124, 134

MIN, 27, 95, 96, 114, 115, 134

MONEY, 91,92, 108, 110, 111, 133, 141, 144
MONTH, 95, 97

N
NOT, 16, 100

(0]

Occurrence, 88

OCCURRENCE, 103, 133

OPEN DATABASE, 13, 52, 86, 87, 102, 112,
134

OR, 16, 18, 20, 100, 101

ORDERBY, 12, 22,53, 56, 84, 123, 125,134,
139

OUTPUT, 135

P

PAGE, 73, 114, 115, 118, 134
PAGE[N], 73

Path, 89

PATH, 76, 103, 133
PRINTER, 114, 127, 134, 135

R

SQL/R A.01.00

Record, 88

REPORT, 57, 58, 60, 62, 63, 71, 81, 84, 97,
114-116, 118, 119, 126, 127, 129,
130, 132, 134, 138, 139, 149, 150

REPORT SELECT, 114, 134

Reserved Words, 90

RIGHT, 108, 110, 133

RUN, 87, 119, 121, 134, 139

S

SELECT, 12, 15, 16, 23-25, 32, 53, 55, 56,
62, 63, 74, 75, 81, 84, 97, 99, 100,
108, 114, 115, 118, 122-126, 134,
139, 148-150

SELECT DISTINCT, 123

SET, 135, 139

SET DATE, 58, 63, 111, 119, 126, 129, 135

SET LENGTH, 116, 123, 126, 129

SET LOCALE, 126, 127, 130, 134, 142

SET OUTPUT, 116, 127, 130, 135

SET OUTPUT =FILE, 127

SET OUTPUT = PRINTER, 127, 130

SET PRINTER, 61, 127, 130

SET WIDTH, 128, 132

SHORT, 109, 111

SHOW, 107, 126, 135, 139, 148

SHOW DATE, 129

SHOW FIELD, 108, 126, 129

SHOW LENGTH, 129

SHOW LOCALE, 130

SHOW MACRO, 126, 130

SHOW OUTPUT, 130

SHOW PRINTER, 130

SHOW VIEW, 126, 131

SHOW WIDTH, 132

SKIP, 73, 114, 115, 118, 134

sqlr, 86

sqlred, 86

sqlrexec, 66, 67, 71, 86, 87

STRLEN, 95, 97, 139

SUBSTR, 98, 99

SUM, 27, 32, 56, 60, 73, 74, 95, 96, 114, 115,
124,134



INDEX 153

SYSDATE, 108, 133

T
Table, 88

TERMINAL, 114, 127,134, 135
TIME, 91, 108, 110, 133

TITLE AS, 58, 62, 114, 117,134
TO, 80, 103, 133

TODAY, 58, 114, 134

TRIM, 98, 99, 139

U
UPPER, 98, 99, 139
USING, 62, 67, 84, 114, 116-119, 134

\%
VALUES ARE, 82, 108, 109, 133
VIEW, 135

W

WHERE, 12, 16, 26, 32, 33, 53, 66, 84, 100,
103, 122-125, 133, 134

WIDTH, 114, 116, 132, 134, 135

X
XOR, 100, 101

Y
YEAR, 95, 97

SQL/R A.01.00



