
SQL/R

Report Generator
for HP ELOQUENCE

The information contained in this document is subject to change without notice.

Marxmeier Softwareentwicklung (mse) makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Marxmeier Softwareentwicklung shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Published Editions:
A.01.00 - 1992

c
 1992-1995 Marxmeier Softwareentwicklung, Wuppertal, Germany.

This document contains information which is protected by copyright. All rights are reserved.
Reproduction, adaption or translation without prior written permission is prohibited, except
under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government De-
partment of Defense is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause in DFARS 252.227-7013. Rights
for non-DOD Government Departments and Agencies are set as forth in the Commercial
Computer Software Restricted Rights clause, FAR 52.227-19 (c) (1,2).

HP ELOQUENCE is a protected trademark of Hewlett-Packard GmbH.

HP-UX is a protected trademark of Hewlett-Packard Inc.

Preface

This manual is divided into the following chapters:

Chapter 1 Introductionand general information about SQL/R. Here you can find brief
descriptions and instructions for installation.

Chapter 2 Not included in this version.

Chapter 3 A quick overview of SQL/R using examples to present the functions and
use of SQL/R.

Chapter 4 Describes the editor program included with SQL/R.

Chapter 5 Explains in detail the various function used to generate reports.

Chapter 6 Defines the syntax and use of the SQL/R language.

Appendix A Short reference guide of the SQL/R language.

Appendix B Date and time formats.

Appendix C Description of differences between SQL/R and SQL.

Appendix D Environment Setup.

Appendix E HP Eloquence format numbers.

Glossary Explanation of terms.

Index Key word index.

SQL/R A.01.00

Preface iii

Typographical Conventions

Unless otherweise noted, this manual uses the following symbolic conventions:

Computer Font Computer font indicates commands, keywords, options, literals,
source codes, system outputs and path names.

�
�

�
� The symbol

�
�

�
�indicates a key on a computer keyboard or an

area or “button” on screen that can be activated by your mouse. For
example,

�
�

�
�CTRL indicates the Control key and

�
�

�
�Continue is an on

screen button.
�
�

�
�CTRL -
�
�

�
�char The symbol

�
�

�
�CTRL -
�
�

�
�char indicates a control character. For exam-

ple
�
�

�
�CTRL -
�
�
�
�Y means you have to simultaneous press the Control

key and the Y key on the keyboard.

italics Within syntax statements, a word in italics represents a formal pa-
rameter or argument that you have to replace with an actual value.
In the following example, you must substitute filename by the name
of the file to be printed:

lp filename

[] Within syntax statements, brackets enclose optional elements. In
the following example, brackets around [-ddev] indicate that the
parameter and its delimiter are optional:

lp [-ddev] filename

f g Within syntax statements, braces indicate that you must choose one
of the listed items. In the following example, the braces around
f-c|-x|-vg indicate, that you must choose one othe the argu-
ments:

tar f-c|-x|-vg

SQL/R A.01.00

Preface iv

Additional Reading

The following additional documentation is referred to in this manual:

HP-UX (online) Documentation

References of the formservices(4) refer to the given topic or item (hereservices)
contained in the indicated section (here 4) of the HP-UX-reference manual. It is also
possible to obtain this documentation on-line using the command man, whereby in
the case of services(4) the user should enter the following statement:

man 4 services

SQL/R A.01.00

Contents

1 Read This First 1

1.1 Welcome . 1

1.2 Requirements . 2

1.3 Installation and Update . 3

1.4 List of Files . 4

1.5 Ordering . 4

1.6 Software Support Contract . 5

3 Introduction 6

3.1 How to start SQL/R . 8

3.1.1 How to Use the SQL/R Editor . 8

3.1.2 Loading of a Sample Report File 9

3.1.3 Execution of the Examples . 10

3.1.4 Termination of SQL/R . 11

3.2 Specification of Instructions . 12

3.3 Opening the Database . 13

3.4 Selection of all Items from a Table . 14

3.5 Selection of a Subset of Items from a Table 15

3.6 SELECT with WHERE . 16

3.7 SELECT with AND . 17

3.8 SELECT with OR . 18

3.9 SELECT with IN . 20

3.10 SELECT with BETWEEN . 21

3.11 Sorting with ORDER BY . 22

SQL/R A.01.00

Contents vi

3.12 SELECT with DISTINCT . 24

3.13 SELECT with String Constants . 25

3.14 SELECT with arithmetic expressions . 26

3.15 SELECT and Functions . 27

3.16 SELECT with LIKE . 29

3.17 SELECT with GROUP BY . 32

3.18 GROUP BY with HAVING . 32

3.19 The next step . 34

4 Editor 35

4.1 Keys for text processing . 35

4.2 The Menu Structure . 38

4.3 Main Menu Bar . 39

4.3.1 SQL/R Start (f4) . 39

4.3.2 Shell (f5) . 40

4.3.3 Info (f6) . 40

4.3.4 Exit Program (f8) . 40

4.4 File Management . 42

4.4.1 Read File . 42

4.4.2 Import File . 42

4.4.3 Save File . 43

4.5 Text Block Management . 45

4.5.1 Mark Block . 45

4.5.2 Copy Block . 45

4.5.3 Delete Block . 45

4.5.4 Insert Block . 46

4.5.5 Save Block . 46

SQL/R A.01.00

Contents vii

4.6 Search and Replace . 47

4.6.1 Search . 48

4.6.2 Replace . 48

4.6.3 Global Replace . 49

5 The Usage of SQL/R 51

5.1 An Easy List of Customers . 52

5.1.1 Opening the Database . 52

5.1.2 Selecting Items from a Table . 53

5.1.3 Formatting the Output without a Form File 55

5.1.4 Formatting the Output with a Form File 62

5.1.5 Using SQL/R and Parameters from the Shell 66

5.2 List of Customers Grouped by Sales Volume 69

5.3 Use of Multiple Tables . 75

5.4 Summary . 84

6 Reference 85

6.1 Starting of SQL/R . 86

6.2 Definition of Terms . 88

6.3 Reserved Words . 90

6.4 Data Types . 91

6.5 Identifiers . 93

6.6 Constants . 93

6.6.1 Numeric Constants . 93

6.6.2 Character String Constants . 94

6.6.3 Date Constants . 94

6.6.4 Time Constants . 94

SQL/R A.01.00

Contents viii

6.7 Arithmetic Expressions . 95

6.7.1 Arithmetic Functions . 96

6.7.2 Date Functions . 97

6.8 String Expressions . 98

6.8.1 String Functions . 99

6.9 Condition Functions . 99

6.10 Conditional Expressions . 100

6.11 The CLOSE DATABASE Command . 102

6.12 The CREATE VIEW Command . 103

6.13 The DEFINE Command . 106

6.14 The EXIT Command . 107

6.15 The HELP Command . 107

6.16 The FIELD Command . 108

6.16.1 FIELD and Expression Pseudonyms 108

6.16.2 The VALUES ARE Rule . 109

6.16.3 The DISPLAY AS Rule . 110

6.17 The OPEN DATABASE command . 112

6.17.1 Multiple Databases . 112

6.17.2 The QIF File . 112

6.18 The REPORT Command . 114

6.18.1 The CALCULATE Rule and the BREAK ON Rule 114

6.18.2 Output Devices . 116

6.18.3 Number of Lines per Page . 116

6.18.4 Output Width . 116

6.18.5 Output Format . 117

6.18.6 The Use of Form Files . 118

6.19 The RUN Command . 121

SQL/R A.01.00

Contents ix

6.20 The SELECT Command . 123

6.20.1 The DISTINCT Rule . 123

6.20.2 The FROM Rule . 123

6.20.3 The WHERE Rule . 124

6.20.4 The GROUP BY Rule . 124

6.20.5 The HAVING Rule . 125

6.20.6 The ORDER BY Rule . 125

6.21 SET Commands . 126

6.21.1 SET DATE . 126

6.21.2 SET LENGTH . 126

6.21.3 SET LOCALE . 126

6.21.4 SET OUTPUT . 127

6.21.5 SET PRINTER . 127

6.21.6 SET WIDTH . 128

6.22 SHOW Commands . 129

6.22.1 SHOW DATE . 129

6.22.2 SHOW FIELD . 129

6.22.3 SHOW LENGTH . 129

6.22.4 SHOW LOCALE . 130

6.22.5 SHOW MACRO . 130

6.22.6 SHOW OUTPUT . 130

6.22.7 SHOW PRINTER . 130

6.22.8 SHOW VIEW . 131

6.22.9 SHOW WIDTH . 132

A Quick Reference Guide 133

SQL/R A.01.00

Contents x

B Date and Time Formats 136

C Differences between SQL/R and standard SQL 139

D Work Environment 140

E HP Eloquence Format Numbers 144

F Glossary 146

SQL/R A.01.00

1
Read This First

1.1 Welcome

Welcome to SQL REPORT (SQL/R), the Report Generator for HP ELOQUENCE.

SQL/R is an extension of HP ELOQUENCE that allows you to create reports and formatted
listings without being restricted to simple calculations.

The following list shows some main features of SQL/R.

� simultaneous access to different databases

� support of index items

� searching for and sorting on all kinds of items

� using a language related to SQL standards

� calculated items

� support of format definition files

1.2 Requirements 2

1.2 Requirements

Prerequisites to successfully use SQL/R are:

� HP 9000 Series 800

� HP-UX Release 7.0 or later

� HP ELOQUENCE Version A.03.10 or later

� about 2 MB free disk space in the filesystem /usr

� DDS tape drive (1.3 GB)

SQL/R is available in two versions:

1. An evaluation copy that can be used for one month.

If you decide to purchase a perpetual license, you will receive a password along with
the license that changes the evaluation copy to a timely unlimited version.

2. A perpetual version that can only be used with the computer for which it was ordered.

Both versions come with the same material and do not differ in functionality.

The product is shipped on 60m DDS Cassette (1.3 GB) in tar format. Other media are
available on request. Please contact your sales representative.

SQL/R A.01.00

Read This First 3

1.3 Installation and Update

This section describes how to install SQL/R. A list of all files together with a brief descrip-
tion can be found in the next section.

Prerequisites for installation:

� The password from your software license sheet to install a perpetual version of SQL/R

� HP-UX superuser (root) login

1. log on as root into your system.

2. insert the DDS Cassette containing SQL/R software.

3. change into the directory /tmp by typing this command:

cd /tmp

4. execute the following tar command:

tar -xv

5. change into the directory /tmp/sqlr by typing this command:

cd sqlr

6. start the installation utility by typing this command.

./install

The installation utility displays further instructions.

SQL/R A.01.00

1.4 List of Files 4

1.4 List of Files

SQL/R software consists of the following files:

File/ Path Description
Directory

sqlr /usr/bin/ SQL/R main program
sqlred /usr/bin/ SQL/R editor
sqlrexec /usr/bin/ SQL/R execution modul
install /usr/sqlr/ installation utility
installg /usr/sqlr/ german installation utility
installe /usr/sqlr/ english installation utility
sqlrbrand /usr/sqlr/ subprogram for installation
C/sqlr.cat /usr/lib/nls/ message catalog (default)
german/sqlr.cat /usr/lib/nls/ message catalog (german)
db.g/ /usr/sqlr/ directory with (german) sample database
sample.g/ /usr/sqlr/ directory with (german) examples
db.e/ /usr/sqlr/ directory with (english) sample database
sample.e/ /usr/sqlr/ directory with (english) examples

1.5 Ordering

If you decide to purchase a perpetual license for SQL/R, you will receive a password along
with the license sheet that allows you to change the evaluation copy into version. The price
of the evaluation copy will be credited to the perpetual license.

To process your order, we need the serial number (also referred as SID - software ID) of
your computer. To display your SID please type the following HP-UX command:

uname -i

SQL/R A.01.00

Read This First 5

1.6 Software Support Contract

We also offer a software support contract for SQL/R. Please contact your sales representa-
tive.

The support contract grants you access to our hotline, free-of-charge patches and bug fixes.
You will be offered new releases under special update conditions.

SQL/R A.01.00

3
Introduction

This chapter will give a brief overview of the SQL/R functionality and usage. It is
recommended for novice and new users. The way SQL/R works in general is demonstrated
by using these examples.

These examples are based on the table CUSTOMERS of the sample database. CUS-
TOMERS contains the following items:

Item Description Data type

CUSTNO Customer number STRING[6]
MATCHCODE Search criteria STRING[10]
NAME1 Customer name STRING[32]
NAME2 STRING[32]
NAME3 STRING[32]
STREET Street / Postbox STRING[32]
ZIPCITY ZIP Code and City STRING[32]
PHONE Phone number STRING[18]
TURNOVER Turnover (month, year, prev.year) REAL(3)1

SALESAREA Sales area STRING[6]

All examples used in this chapter can be found in directory /usr/sqlr/sample. The
corresponding filename is printed in the right margin of a page and starts with the term tut
followed by a number.

The sample data base is stored in /usr/sqlr/db directory and is named DB.

To execute the examplestutxx, it is necessary to change to the directory/usr/sqlr/sample
by using the following HP-UX command:

1Item TURNOVER is an array with the following 3 elements:

- current month (month-to-date): turnover[0]
- current year (year-yo-date): turnover[1]
- previous year: turnover[2]

An array element is always accessed with the help of an index. Please note that the index count starts with 0,
i.e. you retrieve the n-th element by specifying an index value of n-1.

Introduction 7

cd /usr/sqlr/sample

SQL/R A.01.00

3.1 How to start SQL/R 8

3.1 How to start SQL/R

You can start SQL/R by typing the following

sqlr [filename]

at the HP-UX shell prompt. If you specify a filename (e.g. tut02) along with the above
command, the file contents will be loaded immediately.

All messages of the editor utility and the labels of the function keys depend on the value
of LANG environment variable. The text shown here assumes the variable to be set to
LANG=american (�! Appendix D).

3.1.1 How to Use the SQL/R Editor

Entering the sqlr command calls the SQL/R editor. This chapter describes the functions
of SQL/R and shows you how to try a few examples. For more detailed description on
SQL/R editor, see chapter 4 “Editor”.

All input is entered at the current cursor position. If the text to be entered is longer than the
screen display, the line will be shifted left as you enter more text. An inverse ! exclamation
mark appears as the last character in the right margin of the line, if the remainder of the line
is outside the current display.

The following keys can be used to move the cursor on the screen and also modify the
displayed text:

�
�
�
�! Move cursor one character to the right. If used at the end of a line, the

cursor moves to the beginning of the next line.
�
�
�
� Move cursor one character to the left. If used at the beginning of a

line, the cursor moves to the end of the previous line.
�
�
�
�" Move the cursor up one line until it reaches the first line.

�
�
�
�# Move the cursor down one line until it reaches the last line.

�
�

�
�CTRL
�
�
�
�A CTRL A. Move cursor to the first position of the current line.

SQL/R A.01.00

Introduction 9

�
�

�
�CTRL
�
�
�
�E CTRL E. Move cursor one position beyond the last character of the

current line.
�
�
�
� - RETURN moves the cursor to the first position of the next line. If RE-

TURN is used before the last character, the remainder of the sentence
is moved down to the next line at the first position.

�
�

�
�(= BACKSPACE. Erase character before current cursor position. If the

cursor is at the beginning of a line, this line will be attached to the
previous one.

�
�

�
�DEL CHAR Delete character at the current cursor position and shift the remainder

of the sentence one character to the left. If the cursor is at the end of
a line, the next line will be attached to the current line’s end.

�
�

�
�CLR LINE The line is erased from the current cursor position to the end of the

line. If the cursor is at the first character position the entire line is
deleted. If the cursor is at the end of the line, the next line will be
appended to this line.

�
�

�
�BREAK The current activity or program will be aborted. The user will be

prompted before the activity or program aborts.
�
�

�
�CTRL
�
�
�
�L CTRL L. The screen display is refreshed.

�
�

�
�CTRL
�
�
�
�W CTRL W. The display width is toggled between 80 and 132 characters

per line. This feature is supported for terminal types 700/92, 700/94,
700/96 and 700/98.

3.1.2 Loading of a Sample Report File

To display the file function keys, press

�

�

�

�
f1
FILE

To load a text file, press

�

�

	

f4
READ
FILE

SQL/R A.01.00

3.1 How to start SQL/R 10

If there is text currently in the editor work space that was changed, the message appears:

[...] has been modified. Save text ? (y/n)

During the exercises with the examples it is not necessary to save the files. Therefore enter�
�
�
�n for No when the above question appears.

Then the next text file can be retrieved. The following prompt appears:

Enter filename:

Enter the name of the file to be retrieved (e.g. tut02).

To return the the main menu, press

�

�

	

f8
MAIN
MENU

3.1.3 Execution of the Examples

SQL/R is not case sensitive, i.e. it does not differentiate between lower case letters and
upper case letters. Therefore it is not necessary to enter the examples in the case printed in
the manual. For your convenience and for better readability of the examples, however, you
will find all words that are part of the SQL/R language in upper case letters. Item and table
names consist of lower case letters.

Instructions can be split across lines and should be terminated with a semicolon (;). To
enclose strings you can use single as well as double quotes; however, the string must begin
and end with the same type of quote mark.

After entering one of the following examples, you can start execution by hitting function
key:

�

�

	

f4
SQLR
Start

During execution of the instructions the following message appears:

working ...

SQL/R A.01.00

Introduction 11

The results are displayed and can be reviewed. If the number of lines exceeds one screen
display, the last line will say:

-- press <return> to continue or q <return> to quit:

To view the next page of the results, press the RETURN key:

�
�
�
� -

To terminate the display of results and return to the editor, press the following two keys in
sequence:

�
�
�
�q and

�
�
�
� -

When you are back in the editor, you can work on additional examples in the introduction.

3.1.4 Termination of SQL/R

To terminate your SQL/R session, press function key:

�

�

�

�
f8
EXIT

The following message appears directly above the function key menu:

[...] has been modified. Save text ? (y/n)

When practicing with the examples, it is not necessary to save your changes, so enter
�
�
�
�n

for no when prompted with this question.

SQL/R A.01.00

3.2 Specification of Instructions 12

3.2 Specification of Instructions

SQL/R contains keywords that are used in connection with item and table names to build
up command statements.

Here are some of the keywords introduced in this chapter:

SELECT selects the items to be retrieved.
An asterisk indicates that all items
in a table are to be retrieved.

FROM specifies the ’source’ of the items
WHERE specifies the selection conditions
ORDER BY defines the sort order
GROUP BY groups data for further processing

The SELECT instruction is the most important command of SQL/R. It can be used to access
all data of a data base.

The syntax of the select command is shown here:

SELECT what FROM source WHERE condition

what a list of items or formulas
source the name of a table containing the data
condition data selection criteria

The following example displays the items custno and name1 from the table customers if
the item matchcode is equal to “KELLER”. Note that you may use items within selection
condition that aren’t displayed as results (in our example: matchcode).

SELECT custno, name1

FROM customers

WHERE matchcode = "KELLER";

SQL/R A.01.00

Introduction 13

The search results consist of a header line followed by the relevant data lines:

� header line
� result (data) line

� column (item)

KUNDNR NAME1

33007 KELLER, ERNST

23062 Keller, Ihne & Tesch KG

11036 OSKAR KELLER

3.3 Opening the Database

Before you can access a database, you must open it. This is done with theOPEN DATABASE
command.

The sample database used here is called db. In addition to specifying the name, it is also
necessary to also specify the path name of the directory where the database resides.

Starting from directory /usr/sqlr/sample the database can either be accessed by its
relative path and name: ../db/db, or with its absolute path and name: /usr/sqlr/db.
Therefore your first command should be:

OPEN DATABASE "../db/db";

The name and path of the database is always specified within quotes.

SQL/R A.01.00

3.4 Selection of all Items from a Table 14

3.4 Selection of all Items from a Table

Input:

OPEN DATABASE "../db/db";

SELECT * FROM customers; tut02

Result:

CUSTNO MATCHCODE NAME1 NAME2

21101 RAUT TRAUTWEIN HERNE GMBH & CO

31003 1AFIOS WAFIOS MASCHINENFABRIK

13002 29037 SIEMENS AG ABT. ZFELB 23

. . . .

. . . .

. . . .

15046 ZUMTOB ZUMTOBEL GMBH LICHT

17054 Z�OLZER HZV-SPORT, HORST Z�OLZER

In the example, the * (asterisk) specifies that all items in the table “customers” are selected.
The FROM specifies which dataset (of the database) or table contains the data. The result
of the above commands is a list of all data entries (records) of the table customers with
all the items of each record. (The result example listed here is only a subset and does not
contain all the columns and rows).

SQL/R A.01.00

Introduction 15

3.5 Selection of a Subset of Items from a Table

Input:

OPEN DATABASE "../db/db";

SELECT custno, name1, name2 FROM customers; tut03

Result:

CUSTNO NAME1 NAME2

21101 TRAUTWEIN HERNE GMBH & CO

31003 WAFIOS MASCHINENFABRIK

13002 SIEMENS AG ABT. ZFELB 23

. . .

. . .

. . .

15046 ZUMTOBEL GMBH LICHT

17054 HZV-SPORT, HORST Z�OLZER

In this example, only the CUSTNO, NAME1, and NAME2 of each record are displayed.
The subset of items is defined by listing the items, separated by commas in the SELECT
command.

SQL/R A.01.00

3.6 SELECT with WHERE 16

3.6 SELECT with WHERE

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, name1

FROM customers

WHERE matchcode = "KELLER"; tut04

Result:

CUSTNO MATCHCODE NAME1

33007 KELLER KELLER, ERNST

23062 KELLER Keller, Ihne & Tesch KG

11036 KELLER OSKAR KELLER

Now we will use the SELECT . . . WHERE command. This allows you to retrieve only
those data records that satisfy a given condition (in the above example: matchcode equals
“KELLER”). The condition may contain boolean operators such as AND, OR, NOT; rela-
tional operators such as =, <, <=, >, >=, <> and language specific operators such as (LIKE,
IN, BETWEEN).

The following examples will the usage of these complex conditions.

String values must be enclosed in quotes. Numeric values for calculations, as well as date
and time values do not use quotes !

SQL/R A.01.00

Introduction 17

3.7 SELECT with AND

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, name1, name2

FROM customers

WHERE custno > "11000" AND custno < "12000"; tut05

Result:

CUSTNO MATCHCODE NAME1 NAME2

11001 GROZ-B GROZ-BECKERT NADELFABRIKEN

11002 ESJOT ESJOT SCHUHTECHNIK

. . .

. . .

. . .

11044 WERKST WZB WERKSTATT F�UR BEHINDERTE

11045 WESTLA Westland Gummiwerke GmbH & Co

This example shows the selection of two combined conditions with the keywordAND. Only
those data records are selected where customer number is greater than 11000 and is smaller
than 12000.

SQL/R A.01.00

3.8 SELECT with OR 18

3.8 SELECT with OR

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE (matchcode = "KELLER" OR matchcode = "FICHTE") AND zipcity > "73"; tut06

Result:

CUSTNO MATCHCODE ZIPCITY

38004 FICHTE 8646 Nordhalben

29030 FICHTE 8641 Marktrodach

32006 FICHTE 8626 Michelau

33007 KELLER 7300 ESSLINGEN

In the next example, we use the boolean operator OR in addition to the operator AND.
The records retrieved contain a matchcode value of either “KELLER” or “FICHTE” and a
zip code value greater than “73”. The parentheses change the sequence of evaluating the
conditions. It is very important to correctly use parentheses to obtain the desired results.
Changing the location of the parentheses can change the results.

Now enter the following instructions:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE matchcode = "KELLER" OR matchcode = "FICHTE" AND zipcity > "73";

tut07

The results are identical to those retrieved using these commands:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE matchcode = "KELLER" OR (matchcode = "FICHTE" AND zipcity > "73");

SQL/R A.01.00

Introduction 19

Result:

CUSTNO MATCHCODE ZIPCITY

38004 FICHTE 8646 Nordhalben

29030 FICHTE 8641 Marktrodach

32006 FICHTE 8626 Michelau

33007 KELLER 7300 ESSLINGEN

23062 KELLER 7297 ALPIRSBACH

11036 KELLER 7293 PFALZGRAFENWEILER

This example lists all data records with either
matchcode = “KELLER”

or
matchcode = “FICHTE” and zipcity > “73”.

The condition zipcity > “73” is only relevant for those data records that have a matchcode
value equal “FICHTE”.

SQL/R A.01.00

3.9 SELECT with IN 20

3.9 SELECT with IN

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE matchcode IN ("KELLER", "FICHTE", "KL�OCKN"); tut08

Result:

CUSTNO MATCHCODE ZIPCITY

33007 KELLER 7300 ESSLINGEN

23062 KELLER 7297 ALPIRSBACH

11036 KELLER 7293 PFALZGRAFENWEILER

38004 FICHTE 8646 Nordhalben

29030 FICHTE 8641 Marktrodach

32006 FICHTE 8626 Michelau

22032 KL�OCKN 7200 TUTTLINGEN

16037 KL�OCKN 7200 TUTTLINGEN

22020 KL�OCKN 7186 BLAUFELDEN

23065 KL�OCKN 7186 BLAUFELDEN

17046 KL�OCKN 7156 W�USTENROT 1

11038 KL�OCKN 7151 AFFALTERBACH

22033 KL�OCKN 7141 Benningen

The keyword IN is used to search for data records with a list of possible values. The values
are separated with a comma and the list is enclosed in parentheses. The IN operator can be
used is most cases as a replacement for the OR operator.

Therefore the instuctions shown above can also be written as shown here:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE matchcode = "KELLER" OR matchcode = "FICHTE" OR matchcode = "KL�OCKN";

SQL/R A.01.00

Introduction 21

3.10 SELECT with BETWEEN

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE zipcity BETWEEN "7000" AND "7100"; tut10

Result:

CUSTNO MATCHCODE ZIPCITY

21004 KOPEMA 7090 ELLWANGEN/JAGST

17007 KORALL 7080 AALEN

. . .

. . .

. . .

26009 K�ASBOH 7000 STUTTGART 10

24009 K�OLLI 7000 STUTTGART 1

BETWEEN val1 AND val2 is used for searching within a given range of values. The two
values val1 and val2 are part of the range.

SQL/R A.01.00

3.11 Sorting with ORDER BY 22

3.11 Sorting with ORDER BY

Up to now we have only selected data records. The retrieved data has been displayed in the
same sequence as found in the table (data set). Normally, you would format the results
using the ORDER BY command. For example:

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE zipcity BETWEEN "7200" AND "7300"

ORDER BY matchcode, zipcity; tut11

Result:

CUSTNO MATCHCODE ZIPCITY

11036 KELLER 7293 PFALZGRAFENWEILER

23062 KELLER 7297 ALPIRSBACH

. . .

. . .

. . .

22032 KL�OCKN 7200 TUTTLINGEN

16037 KL�OCKN 7200 TUTTLINGEN

This example uses the items matchcode and zipcity for sorting. Multiple level sorts are
possible by specifying several items for the sort. The position of the item within the ORDER
BY command determines the sequence for the sort. The results are sorted by the order in
which the sort items are listed (i.e. the first item defines the primary sort, etc). In the
example, matchcode is the primary value. For identical values of matchcode, the zipcity
value is used as the secondary sort value.

The keywords ASC and DESC define whether the data should be sorted in ascending or
descending order. Ascending is the default, i.e. if no additional keyword is used then ASC
is assumed. The following example uses a descending order. Note that instead of an item
name, it uses the column number to specify the sort criteria.

Input:

SQL/R A.01.00

Introduction 23

OPEN DATABASE "../db/db";

SELECT custno, matchcode, turnover[1]

FROM customers

WHERE zipcity BETWEEN "7200" AND "7300" AND turnover[1] > 0

ORDER BY 3 DESC; tut11a

Result:

CUSTNO MATCHCODE TURNOVER[1]

26039 KIERCH 98602.02

17040 KEWEST 95550.39

. . .

. . .

. . .

20012 KLAFFEI 4667.70

The result was sorted by turnover[1] in descending order. The “3” specifies that the values
of the third item of the SELECT command turnover are used for the sort order.

SQL/R A.01.00

3.12 SELECT with DISTINCT 24

3.12 SELECT with DISTINCT

The DISTINCT condition is used in connection with the SELECT command to retrieve
only those items with a unique value. If a value occurs more than once in the table, only
the first occurence will be listed.

Input:

OPEN DATABASE "../db/db";

SELECT DISTINCT zipcity

FROM customers

WHERE zipcity > "7000" AND zipcity < "7100"

ORDER BY zipcity; tut12

Result:

ZIPCITY

7000 STUTTGART 1

7000 STUTTGART 10

. .

. .

. .

7080 AALEN

7090 ELLWANGEN/JAGST

The above example shows how the use of the DISTINCT option suppressed all records
with the same value for item zipcity.

SQL/R A.01.00

Introduction 25

3.13 SELECT with String Constants

Input:

OPEN DATABASE "../db/db";

SELECT "Customer:", custno, "Name:", name1

FROM customers

WHERE custno < "11010"

ORDER BY custno; tut13

Result:

"Customer:" CUSTNO "Name:" NAME1

Customer: 100 Name: SCHAFFER

Customer: 11001 Name: GROZ-BECKERT

. . . .

. . . .

. . . .

Customer: 11008 Name: SOCIETE

Customer: 11009 Name: G. NOLL

The use of strings in the list of items to be selected allows us to define fixed text partitions
that appear in the output. Each text partition consists of the string and the item. The text
partitions are displays in the order listed in the SELECT command.

SQL/R A.01.00

3.14 SELECT with arithmetic expressions 26

3.14 SELECT with arithmetic expressions

Input:

OPEN DATABASE "../db/db";

SELECT

custno, turnover[0], turnover[1],

(turnover[0]*100)/turnover[1] "percentage"

FROM customers

WHERE turnover[0] > 0 AND turnover[1] > 0

ORDER BY custno; tut14

Result:

CUSTNO TURNOVER[0] TURNOVER[1] percentage

11001 4058.98 18976.81 21.39

11002 7024.89 85839.26 8.18

. . . .

. . . .

. . . .

HOPPE 8401.20 67719.07 12.41

MONT 6196.23 65231.63 9.50

Arithmetic operators (+, -, *, /) can be used to calculate item values for retrieved data
records as well as construct new items. However, all these calculations exist only in the
report. All data in the database remains unchanged.

In the example, only those records where turnover[1] is greater than zero were selected.
This was specified by using the WHERE condition. These records were selected to avoid an
error caused by dividing a number by zero.

SQL/R A.01.00

Introduction 27

3.15 SELECT and Functions

Input:

OPEN DATABASE "../db/db";

SELECT COUNT(*) FROM customers; tut15

Result:

COUNT(*)

1177

There are 5 arithmetic functions available: COUNT, SUM, AVG, MAX and MIN. All functions
have an item name as an argument which will be applied to this parameter. The COUNT
function is the only arithmetic function that allows an asterisk (*) instead of an item name.
The asterisk (*) instructs SQL/R to count all the records in the table (dataset).

Input:

OPEN DATABASE "../db/db";

SELECT AVG(turnover[0]), AVG(turnover[1]/12)

FROM customers

WHERE turnover[0] > 0; tut16

Result:

AVG(TURNOVER[0]) AVG(TURNOVER[1]/12)

4986.98 4265.98

This example shows how to calculate the average value for the items turnover[0] (month-
to-date) and turnover[1]/12 (year-to-date).

SQL/R A.01.00

3.15 SELECT and Functions 28

Input:

OPEN DATABASE "../db/db";

SELECT SUM(turnover[0]), SUM(turnover[1]/12)

FROM customers

WHERE turnover[0] > 0; tut17

Result:

SUM(TURNOVER[0]) SUM(TURNOVER[1]/12)

2937330.82 2512659.58

This example shows how to calculate the total for the items turnover[0] (month-to-date)
and turnover[1]/12 (year-to-date).

Input:

OPEN DATABASE "../db/db";

SELECT COUNT(DISTINCT matchcode) FROM customers; tut18

Result:

COUNT(DISTINCT MATCHCODE)

1012

In this final example, we are using the COUNT and DISTINCT conditions to calculate the
number of unique values for matchcode. Without the DISTINCT condition within the
instruction, each value is counted and the result is identical to the total number of records
in the table.

SQL/R A.01.00

Introduction 29

3.16 SELECT with LIKE

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE matchcode LIKE "KELLER"

ORDER BY custno; tut19

Result:

CUSTNO MATCHCODE ZIPCITY

11036 KELLER 7293 PFALZGRAFENWEILER

23062 KELLER 7297 ALPIRSBACH

33007 KELLER 7300 ESSLINGEN

The operator LIKE allows you to specify a character pattern to use for comparision with
string items. The simplest pattern is a string without wildcards (see example above). Each
question mark (?) represents a single character and an asterisk (*) can represent either no
characters or a combination of characters.

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE zipcity LIKE "7000*"

ORDER BY custno; tut21

SQL/R A.01.00

3.16 SELECT with LIKE 30

Result:

CUSTNO MATCHCODE ZIPCITY

17004 KUNSTO 7000 Stuttgart-Zuffenhausen

24009 K�OLLI 7000 STUTTGART 1

26009 K�ASBOH 7000 STUTTGART 10

29007 KUNSTS 7000 Stuttgart 1

30008 KUTZNE 7000 STUTTGART 80

32008 KUTSCH 7000 STUTTGART 80

35006 KUNSTS 7000 Stuttgart 1

This example showes how to extract all data records where the value for zipcity starts with
“7000”.

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE zipcity LIKE "7?00*"

ORDER BY zipcity; tut22

Result:

CUSTNO MATCHCODE ZIPCITY

24009 K�OLLI 7000 STUTTGART 1

26009 K�ASBOH 7000 STUTTGART 10

. . .

. . .

. . .

11005 HERBER 7900 ULM/DONAU

14011 HERAEU 7900 Ulm

This example retrieves all customer records where the value for zipcity is as follows:

� The 1st character is a “7”

� the second character is any single character

� the third and fourth characters are “0”

SQL/R A.01.00

Introduction 31

� followed by a combination of any characters (or no characters)

The LIKE condition can also be used to define a string of characters within or at the end of
an item:

Input:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, zipcity

FROM customers

WHERE zipcity LIKE "*80"; tut22a

Result:

CUSTNO MATCHCODE ZIPCITY

13018 GEYER 8500 N�urnberg 80

32026 HAPS 8000 M�UNCHEN 80

32008 KUTSCH 7000 STUTTGART 80

30008 KUTZNE 7000 STUTTGART 80

23073 WICKE 2000 Hamburg 80

The example above selects only those customer records with an item value for zipcity ending
with “80”.

SQL/R A.01.00

3.17 SELECT with GROUP BY 32

3.17 SELECT with GROUP BY

Input:

OPEN DATABASE "../db/db";

SELECT salesarea, SUM(turnover[0])

FROM customers

WHERE salesarea BETWEEN "0" AND "9"

GROUP BY salesarea; tut23

Result:

SALESAREA SUM(TURNOVER[0])

0 8864.09

1 53252.06

2 182403.50

3 75383.51

4 262745.05

5 524570.07

6 455429.99

7 497460.46

8 378855.36

9 1065.71

The option GROUP BY consolidates data records with identical values for a specified item
into a single result line. The values of all other items should be combined using the numeric
functions, because each item in the consolidated result line can only hold one value.

The above SELECT ... WHERE statement retrieves all records of the table customers that
have a salesarea value of between “0” and “9”. The GROUP BY option then consolidates
the data records by salesarea. We use the SUM function for the item turnover[0] (month-
to-date turnover) to calculate a group total for each salesarea. This way each value for
salesarea shows up only once and the values of item turnover[0] are totaled.

3.18 GROUP BY with HAVING

The HAVING option can be compared with the keyword WHERE, because it is used in a
similar way: specifically to extract only those consolidated result lines that fulfill a given

SQL/R A.01.00

Introduction 33

condition. The HAVING instruction is processed after execution of the GROUP BY rule
and applies to the GROUP BY results.

Input:

OPEN DATABASE "../db/db";

SELECT salesarea, SUM(turnover[0])

FROM customers

WHERE salesarea BETWEEN "0" AND "9"

GROUP BY salesarea

HAVING SUM(turnover[0]) > 100000; tut24

Result:

SALESAREA SUM(TURNOVER[0])

2 182403.50

4 262745.05

5 524570.07

6 455429.99

7 497460.46

8 378855.36

The HAVING instruction suppresses all of those result lines (groups) that do not satisfy the
condition (SUM(turnover[1]) > 100000). For this condition we can use the same operators
and expressions as for conditions using the WHERE option.

You can compare the output of this example with the output of the previous example, which
used the WHERE condition.

SQL/R A.01.00

3.19 The next step 34

The HAVING option works like a additional filter on the results:

data records

???
filter: WHERE

? ?
build groups

? ?
filter: HAVING

?
sort

?
results (output)

3.19 The next step

We are now at the end of our short introduction to SQL/R. You can use the sample database
for further exercises, e.g. to explore the SQL/R options in more detail as described in the
reference part of this manual.

As you cannot modify data in a database but only read data with SQL/R, you can apply the
examples of this introduction easily and without risk to your own databases. It will help
you gain more experience with your first SQL/R reports.

In chapter 5 you will find some step-by-step instructions on how to develop your own
reports.

SQL/R A.01.00

4
Editor

This chapter describes how to use the SQL/R editor. To start the SQL/R editor, type this
command at the HP-UX shell prompt:

sqlr

If you specify a file name along with the command, this file will immediately be loaded
into the editor.

After you enter the SQL/R command you are in the SQL/R editor environment. You can
now select a function key to continue. Within the editor you can also enter instructions,
execute them, and create QRF files (refer to RUN command) and form files (refer to
REPORT command).

All input is inserted at the current cursor position. If the text to be entered is longer than
the screen width, then the line is moved to the left. If the end of line is not visible from the
current position, an inverse ! is displayed in the right margin of the line.

4.1 Keys for text processing

The following keys can be used for cursor movement and text processing, e.g. deletion of
characters, words or lines:

�
�
�
�! moves the cursor one position to the right. If the cursorr is at the end

of the line, the cursor is moved to the first position of the next line.
�
�
�
� moves the cursor one position to the left. If the cursor is at the

beginning of the line, the cursor is moved to the last position of the
previous line.

�
�
�
�" moves the cursor up one line. If the cursor it is already at the top line,

the cursor stays in the same position. If the previous line is shorter
than the current cursor position, the cursor is moved to the end of that
line.

4.1 Keys for text processing 36

�
�
�
�# moves the cursor down one line. If the cursor it is already on the last

line, the cursor stays in the same position. If the next line is shorter
than the current cursor position, the cursor is moved to the end of that
line.

�
�
�
�- HOME: moves the cursor to the beginning of the first line.

�
�

�
�SHFT
�
�
�
�- SHIFT HOME: moves the cursor one position behind the last character

of the last line.
�
�

�
�CTRL
�
�
�
�A CTRL-A: moves the cursor to the beginning of the current line.

�
�

�
�CTRL
�
�
�
�E CTRL-E: moves the cursor to the next position after the end of line.

�
�
�
� - RETURN: inserts a new line and moves the cursor to the first position

of the new line. If the cursor was at the end of line when the RETURN
key was used, an empty line is inserted, otherwise the text will be split
into two lines at the current cursor position.

�
�

�
�(= BACKSPACE. The character one position to the left left of the current

cursor position is deleted. If the cursor is at the beginning of a line,
this line is appended to the previous line.

�
�

�
�INS LINE INS LINE: deletes the word left to the current cursor position. If the

cursor is at the beginning of the line, the deletion will be done / con-
tinued in the previous line. The cursor position changes accordingly.

�
�

�
�DEL LINE DEL LINE: deletes the word from the current cursor position. If the

end of line has been reached, then the following line is appended.
�
�

�
�INS CHAR inserts a newline at the current cursor position. The cursor does not

move.
�
�

�
�DEL CHAR deletes character at the cursor position. If the cursor is at the end of

the line, the next line will be concatenated to this line.
�
�

�
�CLR LINE the line is deleted from the cursor position to the end of the line. To

delete the entire line, position the cursor at the beginning of the line
and press

�
�

�
�CLR LINE . If the cursor is at the end of the line, the next

line will be concatenated to this line.
�
�

�
�BREAK interrupts the process or program. A confirmation question is dis-

played before the program is aborted.

SQL/R A.01.00

Editor 37

�
�

�
�ESC Press

�
�

�
�ESC and a number (n) to repeat the next command or keystroke

n number of times.
�
�

�
�CTRL
�
�
�
�V the following control character will be inserted into the text. Control

characters are displayed in inverse mode. This is useful for sending
some special control characters to your printer for printing form files.

�
�

�
�CTRL
�
�
�
�G a number (n) followed by CTRL-G moves the cursor to the linen. The

column position remains the same unless the current line is shorter. If
the current line is shorter, the cursor will be positioned at the end of
the line n.

�
�

�
�CTRL
�
�
�
�L CTRL L refreshes the display.

�
�

�
�CTRL
�
�
�
�W Toggles the screen configuration between 80 characters and 132 char-

acters per line. This is currently supported with the following terminal
types: 700/92, 700/94, 700/96 and 700/98.

SQL/R A.01.00

4.2 The Menu Structure 38

4.2 The Menu Structure

?

?

?

FILE
MGMNT

BLOCK SEARCH SQL/R
Start

Shell Info EXIT

FOR-
WARD

BACK-
WARD

REPLACE GLOBAL
REPLACE

MAIN
MENU

Block
TEXT

COPY
BLOCK

DELETE
BLOCK

INSERT
BLOCK

SAVE
BLOCK

MAIN
MENU

SAVE
FILE

SAVE
AS ...

READ
FILE

IMPORT
FILE

MAIN
MENU

Main menu function keys f1 through f3 each display a submenu containing specific

commands. The F1 function key displays file management commands, the F2 function

key displays text block commands and the F3 function key displays text search/replace
commands.

Pressing the f8 function key from any submenu returns you to the main menu.

Screen messages and function key labels are controlled by the LANG variable selected. The
examples given assume the LANG=american configuration. (�! Appendix D).

SQL/R A.01.00

Editor 39

4.3 Main Menu Bar

Main menu function keys f1 through f3 each display a submenu containing specific

commands. The F1 function key displays file management commands, the F2 function

key displays text block commands and the F3 function key displays text search/replace
commands.

4.3.1 SQL/R Start (f4)

Function key f4 starts processing the currently loaded or created commands. During
processing the following message is displayed:

Request is being processed ...

The process results are then displayed and you can review these. If the results are longer
than screen length, the message will be displayed as the last line on the screen:

-- press <return> to continue or q<return> to quit:

Press return to view the next screen.

�
�
�
� -

To return to the text editor, press the following keys:

�
�
�
�q and

�
�
�
� -

SQL/R A.01.00

4.3 Main Menu Bar 40

4.3.2 Shell (f5)

To access the HP-UX shell while in Editor, press the f5 function key.The following
message will appear:

To return to the editor, type exit <return>

To return to the editor, type:

exit
�
�
�
� -

4.3.3 Info (f6)

To display the information bar, press the f6 function key: The information bar above the
function keys will display:

� file name

� file access (read only, read/write)

� number of lines in file

� number of characters in file

� number of characters in the marked text block

� line number of cursor position

The information bar remains on the screen until any key is pressed. In addition to this
callable information bar, all text changes involving more than one line of the text will result
in a short message being displayed on the screen.

4.3.4 Exit Program (f8)

To exit SQL/R, press the f8 function key.

If you have modified an existing file, the following message appears:

[filename] was modified. Save changes (y/n) ?

SQL/R A.01.00

Editor 41

Press
�
�
�
�y to save the changes.

Press
�
�
�
�n to exit without saving the changes. The existing file remains unchanged.

If the file is a new file, the following message is displayed:

[memory] was modified. Save changes (y/n) ?

If you press
�
�
�
�y , the following message appears:

Please enter filename:

Enter a filename and press RETURN:

�
�
�
� -

to save the file and exit SQL/R.

SQL/R A.01.00

4.4 File Management 42

4.4 File Management

The menu bar displays the commands for loading and saving text and files. When prompted
to enter a filename, enter the filename and press the RETURN key begin processing that
file. Pressing the f8 MAIN MENU function key displays the main menu bar.

Press the
�
�

�
�BREAK key to abort the execution.

4.4.1 Read File

To load a text file, press

f4 Read File

If the text file was modified, the following message appears:

[...] was modified. Save changes (y/n)?

Within the brackets appears either the filename (existing file) or "memory" (new file). The
name of the new file appears only after the file has been saved with this filename. Then the
following message appears:

Read file:

Enter the file name. After the file is loaded, the following message appears:

Read: Infotext

The information block displays the filename, number of lines and characters read, and the
line number of the cursor position.

4.4.2 Import File

In addition to loading and reading a file, it is also possible to import a file into the current
text file. To import a file, position the cursor where the new file should be inserted and
press:

SQL/R A.01.00

Editor 43

f5 Import File

The message appears:

Import File:

Enter the filename of the file to be imported. The import file is then read and inserted at the
cursor position. In addition, a message is displayed with the number of lines inserted.

4.4.3 Save File

To save a file, press:

f1 Save File

If this is a new file, the following message appears:

Please enter filename:

Enter a file name and press RETURN. The following message appears:

Saved: Infotext

The information block contains the filename, number of lines and characters, and the line
number of the cursor position.

If the file is an existing file, the file is saved immediately. If the existing file was not modified,
no save is necessary and thedie Sicherung ohne zusätzliche Eingaben durchgeführt. Wurde
die following message appears:

Save not needed

To save an existing file using a different name press

f2 Save as

The following message appears:

SQL/R A.01.00

4.4 File Management 44

Save as:

Enter the new filename and press RETURN. The information bar will now display the new
filename.

SQL/R A.01.00

Editor 45

4.5 Text Block Management

The commands discussed so far modify individualcharacters and lines, but it is also possible
to modify blocks of text with the commands of the function key set. Modifying blocks
of text involves 2 steps: first marking the text block and second selecting the action to be
taken.

To return to the main menubar, press the f8 MAIN MENU function key.

4.5.1 Mark Block

Position the cursor at the beginning of the text to be blocked and press

f1 BLOCK TEXT

The following message appears:

Mark set

Now position the cursor at the end of the text to be blocked. All text between the first cursor
position and the last cursor position will be included in the block and therefore modified by
the selected action.

4.5.2 Copy Block

The text block will be copied into the “block memory” area of memory. When this has
completed, the following message appears:

n characters copied into memory

The “block memory” remains unchanged until either replaced by a new block of text or
deleted.

4.5.3 Delete Block

The blocked text is copied into“block memory” and deleted from the text. When completed,
the following message appears:

n characters moved into memory

SQL/R A.01.00

4.5 Text Block Management 46

4.5.4 Insert Block

The contents of “block memory” are inserted into the text at the cursor position. When
completed, the following message appears:

n lines inserted

You may repeat this command to insert the same text block into the text in several locations.

To move a text block within a file press f4 DELETE BLOCK , then position the cursor to
the new location and press f5 INSERT BLOCK .

4.5.5 Save Block

To save a text block from “block memory” as a separate file, press f6 SAVE BLOCK .
The following message appears:

write block to filename:

Enter a filename and press
�
�
�
� - .

The block is saved as a file and the following message appears:

block text saved: infotext

The infotext displays the filename, the number of saved characters and lines, and the line
number of the cursor position.

SQL/R A.01.00

Editor 47

4.6 Search and Replace

The editor provides a search and replace feature to locate specific text and replace it with
different text. The specified search pattern can consist of regular expressions or specific
character strings.

A regular expression is a sequence of characters that defines a set of character strings.

� A normal character represents the same character in the text.

Smith searches for “Smith” in the text

� A dot . is a placeholder for any single character.

de. searches for “der”, “des”, “den”, etc.

� A ˆ means that the following expression occurs at the beginning of a line.

ˆSELECT searches for “SELECT” at the beginning of a line.

� A $ means that the following expression occurs at the end of a line.

SELECT$ searches for “SELECT” at the end of a line

� Characters enclosed in square brackets [] are searched regardless of the order in
which they are listed. Sequential characters can be abbreviated with a - (hyphen).

[0-9] searches for all numeric characters

[abc] searches for character strings containing “a”, “b” or “c”

� If one of the special search characters is followed by an (*) asterisk, then the characters
represented by the search characters can be repeated several times.

A[0-9]*B searches “A12...76B”.

Several numeric characters can occur between “A” and “B”.

� To search any of the above wildcard characters as a literal, place a backslash (\)
before the character.

20.\.00 searches for 201.00, 202.00, 20a.00 etc.

SQL/R A.01.00

4.6 Search and Replace 48

4.6.1 Search

You can search forwards as well as backwards. Forwards means from the cursor position
to the end of the text and backwards means from the cursor position to the beginning of the
text. To search forwards, press

f1 FORWARD

The following message appears:

Forward search:

Enter the search pattern and press
�
�
�
� - .

When the search pattern is found, the string is highlighted and the cursor is positioned at
the beginning of the string. If the search string is not found, the following message appears:

pattern not found

To search the same pattern in another direction, press RETURN when prompted for the
search pattern. The search proceeds as normal.

4.6.2 Replace

Press the key

f4 REPLACE

The following message appears:

Replace:

Enter the text that should be replaced and press RETURN.

The search text can contain regular expressions. When the text is for example A[1-9]B
and should be replaced by AB, then all expressions such as A0B, A1B, . . . A9B will be
replaced by AB.

SQL/R A.01.00

Editor 49

To replace a constant string containing characters that are used to represent regular expres-
sions, use a backslash (\) before the character. For example, to replace 20.00, use the
string 20\.00.

The following message then appears, prompting for the replacement text:

Replace: ... by:

Enter the desired replacement text and press RETURN. If the replacement text contains an
ampersand &, the original text will be inserted in this position. To avoid this, designate the
ampersand & as a literal by preceding it with a backslash \.

The search text will be searched forward of the cursor position, and when found, the cursor
will stop at the first position of the found search text.

The following message appears:

replace (old text) by (new text) ? (!/y/n)

Pressing
�
�
�
�y for “yes” replaces the old text with the new text and displays the next occurence

of the search text. Pressing
�
�
�
�n for “no” leaves the text unchanged and displays the next

occurence of the search text. Pressing
�
�
�
�! for “all” replaces all occurences of the search text

with the new text without prompting for each occurence.

To end the search / replace operation, press
�
�

�
�BREAK at any time.

If the search text is not found, the following message appears:

pattern not found

After a successful text replacement, the following message appears:

n replacement(s) in m line(s)

N represents the number of times the search text was found and replaced with the new text.
M represents the number of modified lines resulting from the search / replace.

4.6.3 Global Replace

Press the key

SQL/R A.01.00

4.6 Search and Replace 50

f5 GLOBAL REPLACE

The entry of the search and replace texts functions as described previously, the search text
is replaced without prompting the user to confirm the change. The cursor position remains
unchanged during the operation. After the global replace ends, the following message
appears:

n replacement(s) in m line(s)

N represents the number of times the search text was found and replaced with the new text.
M represents the number of modified lines resulting from the search / replace.

SQL/R A.01.00

5
The Usage of SQL/R

This chapter contains a detailed description of the SQL/R language and specific examples.
All examples are based on the accompanying sample database and can be performed by
you. The examples were designed to produce lists similar to those commonly used by
business. This way, you can probably adapt these sample reports by simply modifying the
item and table names.

Before beginning this chapter, you should be familiar with the SQL/R basics covered in
chapter 3.

All examples are located in the /usr/sqlr/sample directory and are designated with
the file name man and a number. The exact file name is shown in small print in the right
margin of the page.

To use these examples, it will be necessary to change to the directory/usr/sqlr/sample.
To do this, enter:

cd /usr/sqlr/sample

The sample database is located in the /usr/sqlr/db directory and is named DB.

The sample results shown in this chapter are printed in simplified form to show the results
format. To view actual results, practice the examples on the accompanying sample database.

5.1 An Easy List of Customers 52

5.1 An Easy List of Customers

The goal of this section is to explain the steps necessary to produce a list. To demonstrate
these steps, an example is presented in which a list is produced using the basic elements of
SQL/R language.

The individual steps:

� Opening the database

� Selecting items (columns) from a table

� Formating output without a form file

� Formating output with a form file

� Using batch files and parameters

We want to produce a list of customers from the “CUSTOMERS” table, which is part of
the “DB” database. The list will report the customer number, the customer matchcode, the
complete customer name, and the month-to-date turnover. We will only select customers
with actual turnover. The list will be sorted by customer number in ascending order.

5.1.1 Opening the Database

A database must be opened before records can be extracted. To open a database, enter the
command:

OPEN DATABASE "name";

The name of the database is enclosed in quotes. In this example, we will give the command:

OPEN DATABASE "../db/db";

Please note that each SQL/R command ends in a semicolon.

You can also open multiple databases and use tables from each of these databases to produce
a list.

SQL/R A.01.00

The Usage of SQL/R 53

5.1.2 Selecting Items from a Table

The selection of items (columns) from a table is done with the SELECT command. This
command consists of several parts:

selection of n items : SELECT S1, S2, ... , Sn
selection of the table : FROM table name
conditions for the selection : WHERE conditions
sort order : ORDER BY O1, O2, ... , On

To produce the list in our example, enter the following commands as shown:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, name1, name2, turnover[0]

FROM customers

WHERE turnover[0] > 0

ORDER BY custno; man11

Result:

PAGE 1

CUSTNO MATCHCODE NAME1 NAME2 TURNOVER[0]

00001 KUGEL Kugelfischer Maschinenfabrik 1000.00

...

While customer number and matchcode correspond to exactly one item, customer name
and turnover are stored in a different way in table CUSTOMERS.

The customer name is a combination of two fields, name1 and name2.

SQL/R A.01.00

5.1 An Easy List of Customers 54

The field turnover is an array composed of 3 elements that each contains a different value
as shown here:

turnover[0] = month-to-date
turnover[1] = year-to-date
turnover[2] = previous year

A particular element in an array will always be retrieved by use of a index number, which
in this example is 0. Remember to number your elements beginning with zero. This means
that the n-th element in an array is numbered n-1 in the index.

The commands described have extracted the desired records from the table. Now we will
format these records to produce the final list.

SQL/R A.01.00

The Usage of SQL/R 55

5.1.3 Formatting the Output without a Form File

Because the customer name is composed of the data in two separate fields, two fields will
also be produced in the list. To join the two fields in the output, use the & (ampersand)
operator and an empty space enclosed in quotes to display the two name parts together with
a blank between the names.

There are two ways to do this. One way is to include this expression in the SELECT
command:

OPEN DATABASE "../db/db";

SELECT custno, matchcode, name1 & " " & name2, turnover[0]

FROM customers

WHERE turnover[0] > 0

ORDER BY custno; man12

Result:

PAGE 1

CUSTNO MATCHCODE NAME1&" "&NAME2 TURNOVER[0]

00001 KUGEL Kugelfischer Maschinenfabrik 1000.00

...

The second alternative is to use the FIELD command to define an alternate name. This
alternate name is then inserted into the SELECT command in place of the two original item
names.

OPEN DATABASE "../db/db";

FIELD name = name1 & " " & name2;

SELECT custno, matchcode, name, turnover[0]

FROM customers

WHERE turnover[0] > 0

ORDER BY custno; man13

SQL/R A.01.00

5.1 An Easy List of Customers 56

Result:

PAGE 1

CUSTNO MATCHCODE NAME TURNOVER[0]

00001 KUGEL Kugelfischer Maschinenfabrik 1000.00

...

The actual field name is used as a heading in the report. This field name may not be
self-explanatory though. Therefore the capability exists to rename this report heading in
the SELECT command line. In the previous report examples we have always used the field
name as it appears in the SELECT statement. However, you can also refer to a field (item)
by a number representing the field position in the SELECT command. This numerical alias
can be used in the ORDER BY, GROUP, and arithmetic calculation commands (such as
SUM).

In our example above, the first field name is custno. The numerical alias for this field
would be 1, since it is the first field when counting from left to right. The same principle
applies to the other fields as well.

NOTE: You must use a numerical alias for a field if you assigned an alternate name to one
or more fields in the SELECT command.

The next example shows how you would use alternate headings and the alias naming feature:

OPEN DATABASE "../db/db";

FIELD name = name1 & " " & name2;

SELECT

custno "Custno.", matchcode "Matchcode",

name "Company", turnover[0] "Monthly Sales"

FROM customers

WHERE turnover[0] > 0

ORDER BY 1; man14

SQL/R A.01.00

The Usage of SQL/R 57

Result:

PAGE 1

Custno. Matchcode Company Monthly Sales

...

23062 KELLER Keller, Ihne & Tesch KG 1000.00

...

To further enhance the report, we can use theREPORT command. Now we will add a report
title and the current date to the report:

OPEN DATABASE "../db/db";

FIELD name = name1 & " " & name2;

REPORT

SELECT

custno "Custno.", matchcode "Matchcode",

name "Company", turnover[0] "Monthly Sales"

FROM customers

WHERE turnover[0] > 0

ORDER BY 1

TITLE AS "CUSTOMER SALES FOR CURRENT MONTH/SORTED BY CUSTOMER NUMBER/"

DATE AS TODAY; man15

SQL/R A.01.00

5.1 An Easy List of Customers 58

Result:

08/01/93 CUSTOMER SALES FOR CURRENT MONTH PAGE 1

SORTED BY CUSTOMER NUMBER

Custno. Matchcode Company Monthly Sales

...

23062 KELLER Keller, Ihne & Tesch KG 1000.00

...

As you can see, we used TITLE AS clause to add a report title. If the title consists of
more than one line, use the slash (/) to mark the separation between the individual lines of
the title. Each line will then be automatically centered. Page numbers always appear in the
right margin.

The use of the DATE AS command prints the current date in the left margin. You can either
enter a specific date format with the DATE AS command or use the word TODAY. In this
case, the date format configured with the SET DATE command will be used. Default is
the American date format MM/DD/YY.

A specific date format can be configured using the SET DATE command as follows:

SET DATE = "%d.%m.%y";

This command produces the European date format DD.MM.YY. The allowable date formats
are shown in appendix B.

The REPORT command also gives you the capability to calculate subtotals and totals by
using the CALCULATE command. In the next example, we want a list of customers with a
total showing the number of customers and the total sales for all customers.

SQL/R A.01.00

The Usage of SQL/R 59

OPEN DATABASE "../db/db";

FIELD name = name1 & " " & name2;

REPORT

SELECT

custno "Custno.", matchcode "Matchcode",

name "Company", turnover[0] "Monthly Sales"

FROM customers

WHERE turnover[0] > 0

ORDER BY 1

CALCULATE

COUNT(1) BREAK ON REPORT,

SUM(4) BREAK ON REPORT

TITLE AS "CUSTOMER SALES FOR CURRENT MONTH/SORTED BY CUSTOMER NUMBER/"

DATE AS "Date: %d.%m.%y"; man16

SQL/R A.01.00

5.1 An Easy List of Customers 60

Result:

Date: 30.01.93 CUSTOMER SALES FOR CURRENT MONTH PAGE 1

SORTED BY CUSTOMER NUMBER

Custno. Matchcode Company Monthly Sales

...

23062 KELLER Keller, Ihne & Tesch KG 1000.00

...

-------- ---------- ----------------------------- -------------

100 COUNT

10000.00 SUM

The calculations are determined by an arithmetic operator followed by a list of field numbers,
enclosed in parentheses, to which the arithmetic is applied. Within a REPORT command,
you can define several calculations, separated by commas. The results of these calculations
will all be reported on one line in the output, and in the order in which they were entered in
the command.

The BREAK ON command defines when a subtotal should be listed. To display a total for
the entire report, use the BREAK ON REPORT command. In the previous example, the
BREAK ON REPORT command was used to display a total for the number of customers
and their total sales at the end of the report.

By default, subtotals and totals will be followed by the name of the arithmetic function used
to calculate the number. In our previous example this was COUNT and SUM. However, you
can also substitute a specific text label for this arithmetic label. This is done by entering
such a label in quotes directly after the arithmetic function in the CALCULATE command.

The CALCULATE command is then entered as follows:

CALCULATE
COUNT(1) "Customers"

BREAK ON REPORT
SUM(4) "Sales Total"

BREAK ON REPORT

After you have the desired output online, you can print the report. The output will appear
with the default length of 24 lines (normal screen length).

This value is probably not appropriate for your printer. Therefore you may want to reset
it with the LENGTH command. This command applies to output sent to the printer as well

SQL/R A.01.00

The Usage of SQL/R 61

as to your display screen. Output can be sent to the printer by using the INTO PRINTER
command, as shown in this example:

OPEN DATABASE "../db/db";

FIELD name = name1 & " " & name2;

REPORT

SELECT

custno "Custno.", matchcode "Matchcode",

name "Company", turnover[0] "Monthly Sales"

FROM customers

WHERE turnover[0] > 0

ORDER BY 1

CALCULATE

COUNT(1) BREAK ON REPORT,

SUM(4) BREAK ON REPORT

INTO PRINTER

TITLE AS "CUSTOMER SALES FOR CURRENT MONTH/SORTED BY CUSTOMER NUMBER/"

DATE AS "Date: %d.%m.%y"

LENGTH = 72; man17

NOTE: The default printer is the system printer. To select a different printer, use the SET
PRINTER command. For more information on this command, see 6.21.5 on page 127.

SQL/R A.01.00

5.1 An Easy List of Customers 62

5.1.4 Formatting the Output with a Form File

Report formats can also be enhanced by the use of a form file. Form files are referenced by
the USING command in the REPORT command section. It is not necessary to define report
and field titles if a form file is used. These can be defined in the form file.

The report defined in the previous example is modified to use a form file in this way:

OPEN DATABASE "../db/db";

FIELD name = name1 & " " & name2;

REPORT

SELECT custno, matchcode, name, turnover[0]

FROM customers

WHERE turnover[0] > 0

ORDER BY 1

CALCULATE

COUNT(1) BREAK ON REPORT,

SUM(4) BREAK ON REPORT

INTO PRINTER

DATE AS "%d.%m.%y"

LENGTH = 72

USING "man18.frm"; man18

NOTE: Use of the TITLE AS command is not allowed when using a form file. Also the
USING command must be the last command in the REPORT section.

A form file consists of a number of sections, separated by comment lines. These comment
lines always begin with two percentage symbols %%.

The first section is the page heading that appears at the top of each new page. This page
heading processes the report title, date and page number. You also have the option of
including results of the SELECT command in this page heading section.

The following lines illustrate the page heading shown at the end of this section:

LIST OF CUSTOMER SALES FOR CURRENT MONTH Page: $page
SORTED BY CUSTOMER NUMBER Date: $date

SQL/R A.01.00

The Usage of SQL/R 63

Custno Matchcode Company Monthly Sales
--
%% end of page header

The page header section shown includes two special options, namely the $page and the
$date. The $page option is important, because it consecutively numbers the pages of
the output. The page number position is defined in the form file. The only requirement is
that the $page option must appear in either the page header or footer sections.

Similarly, the $date option defines the date in the report. The $date option is different
from the $page option in that the $date option can be used in any section of the form
file. If no alternate date format is defined by using the DATE AS command, then the date
format default defined by the SET DATE command is used.

The second section of the form file defines the format of the lines of output produced as a
result of the SELECT command:

@custno @matchcode @name @turnover[0]
%% end of line format section

or

@1 @2 @3 @4
%% end of line format section

The “@” character sets the alignment of the field columns in the output. The value of the
individual fields in a line are referenced in the form file by using either the field name or
the field position in the SELECT command.

Each line of the output, retrieved using theSELECT command, will be in the defined format.

The field values retrieved with the SELECT command can also be used in the page heading
section. The values shown in the page heading are always the actual field values at the time
the page heading is produced.

The form file must include a break section for each calculation defined within a REPORT or
CALCULATE command. This break section then defines the output format for the calculated
values. The break sections should be defined in the form file in the same sequence as they
appear in the REPORT command.

Customers: @1
%% end of the break section for COUNT(1)
Sales total: @4
%% end of the break section for SUM(4)

SQL/R A.01.00

5.1 An Easy List of Customers 64

A page footer section can also be defined in the form file. This page footer will appear at
the bottom of each page.

Finally, the complete form file has the following format:

CUSTOMER SALES FOR CURRENT MONTH Page: $page

SORTED BY CUSTOMER NUMBERS Date: $date

Custno Matchcode Company Monthly Sales

%% end of page heading

@1 @2 @3 @4

%% end of line format section

Customers: @1

%% end of break section for COUNT(1)

Sales total: @4

%% end of break section for SUM(4)

man18.frm

SQL/R A.01.00

The Usage of SQL/R 65

This form file produces the following result:

CUSTOMER SALES FOR CURRENT MONTH Page: 1

SORTED BY CUSTOMER NUMBER Date: 01.08.92

Custno Matchcode Company Monthly Sales

...

23062 KELLER Keller, Ihne & Tesch KG 1000.00

...

Customers: 100

Sales total: 10000.00

NOTE: The length of a field display is determined by the field type and the settings defined
with the FIELD . . . DISPLAY AS command. The appearance of a field in the output is
defined in the form file. Field values longer than the space available in the output will be
right truncated.

SQL/R A.01.00

5.1 An Easy List of Customers 66

5.1.5 Using SQL/R and Parameters from the Shell

The previous section explained how to interactively use SQL/R. It is also possible to store
these commands in a file and execute this file later. You use the sqlrexec command to
do this. The sqlrexec command is used as follows:

sqlrexec customers

Where “customers” is the name of the SQL/R script file. In addition, you can specify up to
8 parameters at runtime with this command. In the following example, all customers with
sales are reported. To request a list of all customers with a minimum of 1,000 in sales, a
value of 1,000 is needed for the WHERE command. It is possible to provide this value with
the sqlrexec command for use with the stored SQL/R commands.

Please note: Since commas are used to separate the different parameter values, no commas
should be used in the value itself.

sqlrexec customers 1,000.00 wrong
sqlrexec customers 1000,00 wrong

sqlrexec customers 1000.00 right
sqlrexec customers 1000 right

The name of the form file used to format the output should be specified as follows:

sqlrexec customers 1000 customers.frm

Where “customers.frm” is the name of the form file. To properly execute this command, a
modification is required for the command file “customers”. Parameters used in calculations
should be referenced by a $ character followed by a number representing the sequence in
which the parameter appears in the sqlrexec command. These $n designations are then
calculated as actual values during the operation.

SQL/R A.01.00

The Usage of SQL/R 67

OPEN DATABASE "../db/db";

FIELD name = name1 & " " & name2;

REPORT

SELECT custno, matchcode, name, turnover[0]

FROM customers

WHERE turnover[0] > $1

ORDER BY 1

CALCULATE

COUNT(1) BREAK ON REPORT,

SUM(4) BREAK ON REPORT

DATE AS "%d.%m.%y"

LENGTH = 72

USING "$2"; man19

Please note that as shown in this example the form file is passed as a character string to the
USING command. Therefore the parameter has to be enclosed in quotation marks too.

The parameters from the sqlrexec command can also be carried to the form file in which
$n marks are used to indicate which parameter should be used where.

LIST OF CUSTOMERS WITH SALES GREATER THAN $1 Page: $page

IN CURRENT MONTH SORTED BY CUSTOMER NUMBERS Date: $date

Custno Matchcode Company Monthly Sales

%% end of page heading

@1 @2 @3 @4

%% end of line format section

Customers: @1

%% end of break section for COUNT(1)

Sales total: @4

%% end of break section for SUM(4) man19.frm

The form file had been modified to show a different value for the sales minimum in the
page header.

You can also create a short shell script to prompt the user for the parameter values as shown
here:

SQL/R A.01.00

5.1 An Easy List of Customers 68

#!/bin/sh

man19.sh

echo "LIST OF CUSTOMERS WITH SALESnn"

echo "SALES MINIMUM GREATER THAN: nc"

read sales

if [-z "$sales"]

then

sales="0"

fi

echo "FORM FILE : nc"

read form

if [-z "$form"]

then

form=man19.frm

fi

sqlrexec -n $sales $form | lp -onb -l72 man19.sh

As shown, the user is prompted for the necessary input and these inputs are then used for
the report generation. The resulting output (stdout) is sent to the system printer.

SQL/R A.01.00

The Usage of SQL/R 69

5.2 List of Customers Grouped by Sales Volume

The second example illustrates additional capabilities of the commands explained so far.

We want to develop a list of customers with the customer number, name and sales for the
previous year. The customers should be grouped by sales and the output should be sorted
by sales in descending order and in addition, the sales of each group should be subtotaled.
This same report should contain a summary list with the number of customers per group
and a comparison of current and previous year sales.

The following example shows the SQL/R commands used to prepare the report. Following
this example is a step-by-step description of the commands.

The command file man21:

OPEN DATABASE "../db/db";

SET DATE = "%d.%m.%y";

FIELD prevsales = turnover[2] DISPLAY AS MONEY(12, 0);

FIELD ytdsales = turnover[1] DISPLAY AS MONEY(12, 0);

FIELD groups = IF (prevsales >= 800000, "A",

IF (prevsales >= 250000, "B", "C"));

REPORT

SELECT groups, custno, name1, prevsales

FROM customers

WHERE prevsales <>0

ORDER BY 4 DESC

CALCULATE

SUM(4) BREAK ON (1) PAGE

USING "man21a.frm";

SQL/R A.01.00

5.2 List of Customers Grouped by Sales Volume 70

REPORT

SELECT

group, COUNT(custno), SUM(prevsales), SUM(ytdsales)

FROM customers

GROUP BY 1

CALCULATE

SUM(2,3,4) BREAK ON REPORT

USING "man21b.frm";

EXIT; man21

The form file man21a.frm:

CUSTOMER SALES REPORT page: $page

- class @1 - date: $date

Customer Company previous year sales

%% End of heading

@2 @3 @4

%% End of results

T O T A L @4

%% End of break on SUM(4) man21a.frm

The form file man21b.frm:

CUSTOMER SALES REPORT page: $page

- summary - date: $date

Class Count previous year sales YTD sales

%% End of heading

@1 @2 @3 @4

%% End of results

** @2 @3 @4

%% End of break on SUM(2,3,4) man21b.frm

SQL/R A.01.00

The Usage of SQL/R 71

Note that because each of the two REPORT commands creates a complete list, several form
files can be used. Therefore, you can create a command file in which there are several
REPORT commands, each producing a separate list. You can then execute this command
file by using the sqlrexec command.

The previous commands shows the following enhanced SQL/R features:

� the DISPLAY AS rule in the FIELD command

� the use of conditional expressions IF(condition, yes, no)

� use of sort order

� enhancement of the CALCULATE rule within the REPORT command

� use of the GROUP BY rule and its function in selecting columns in a table

� the EXIT command

In this example, because the selected sales are not individual items, but rather elements of
an array, we use the FIELD command to define an alternate name for the element. This
helps to make the following commands more readable. In addition, we want to display the
value of the sales in Dollars ($) without decimals. To do this we use the DISPLAY AS
rule.

FIELD prevsales = turnover[2] DISPLAY AS MONEY(12, 0);

The next task is to define the groups and to produce the desired values for these groups.
You use the FIELD command to define a temporary label for the columns. We did that in
a previous example and called a column name. The values for the entries of the column
group are calculated through a nested IF command.

SQL/R A.01.00

5.2 List of Customers Grouped by Sales Volume 72

The arrangement of the commands is illustrated by the following questions and relative
answers:

Is last year’s sales amount greater or equal to 800,000.00 ?

Yes the customer belongs in group A.
No Is last year’s sales amount greater or equal to 250,000.00 ?

Yes the customer belongs in group B
No the customer belongs in group C

This decision tree could also be expanded to handle a larger number of groups.

The following FIELD command in connection with the IF command shows how the
SQL/R language can be used to answer the questions shown above.

FIELD group = IF (prevsales >= 800000, "A",
IF (prevsales >= 250000, "B", "C"));

The IF command is used to choose between two selections, based on the result of a
previously evaluated condition. These selections can be constants, variables, calculations,
or, as shown in this example, specific conditions.

The first list will be sorted by previous year’s sales amounts. Generally, lists are sorted in
ascending order. To sort the list in descending order, use the word DESC in addition to the
column label or item number.

ORDER BY 4 DESC

To calculate subtotals, in this case the totals of the previous year’s sales amounts for groups
A, B, and C, you use the CALCULATE rule. The list should also cover these three points:

� Calculate the previous year’s total sales prevsales

� Display the subtotal whenever the value in the column group changes, and reset the
subtotal to zero

� Generate a page break after the display of each subtotal

To format the output this way, use the following commands:

SQL/R A.01.00

The Usage of SQL/R 73

CALCULATE
SUM(prevsales) BREAK ON (group)

or

SUM(4) BREAK ON (1)

In contrast to the first example, we defined totals to be calculated depending on columns.
The command BREAK ON REPORT is used to define calculations (e.g. building totals)
using all entries of a list. To retain subtotals, it is necessary to define exactly where each
subtotal should be reported. To report these subtotals, include the column label after the
BREAK ON command. When the BREAK ON command is followed by a column label,
the subtotal is reported and the counter is reset to zero whenever the value of the column
changes and the calculation is restarted.

BREAK ON (ref1, ref2, ...)

It is also possible to define a line or page advance using the BREAK ON command. The
option SKIP

n

causes the output to move forward n lines. The PAGE[n] option causes the output to
advance n pages, where the default is n = 1. The line and page advances are performed
after each subtotal.

To print our list with only one group per page, we will use the PAGE option as follows:

CALCULATE
SUM(prevsales) BREAK ON (group) PAGE

or

SUM(4) BREAK ON (1) PAGE

In the second report, a total is calculated for all customers and all sales. Therefore we
will calculate three subtotals using the function SUM within the CALCULATE command.
Because we want a grand total, we will use the BREAK ON REPORT command as shown
here:

CALCULATE
SUM(2) BREAK ON REPORT,
SUM(3) BREAK ON REPORT,
SUM(4) BREAK ON REPORT

SQL/R A.01.00

5.2 List of Customers Grouped by Sales Volume 74

Because an arithmetic function can contain a list of arguments, we can simplify the command
as shown here:

CALCULATE
SUM(2,3,4) BREAK ON REPORT

Both ways of structuring the command produce the same totals. The fundamental difference
is in the output: Because each BREAK ON command produces a separate break and total,
the first method would produce three separate breaks and totals and the output would show
each grand total on a separate line. Using the second method would produce only one break
and would show the same grand totals but on one line.

The fundamental enhancement to our first example is to include the GROUP BY option
within our SELECT command. Our objective is to produce a list showing only the groups
and their subtotals.

To do this, we need to group all customers into group A, B, or C with the help of the GROUP
BY option:

GROUP BY ref1, ref2, ...

All entries in the table which have an identical value for the specified column (ref1, ref2,
...) are grouped together. In our example this means that all customers are separated by
sales into group A, B, or C.

Please note that the result is only one record. In order to clearly match the values of the
other selected columns in this result line it is necessary that the columns either contain a
constant value or are the result of a calculation. For our example this means that the yearly
sales, which are not identical, must be totaled using the SUM function, and the customer
names must be counted using the COUNT function.

Shown here is the full SELECT command:

SELECT
group, COUNT(custno), SUM(prevsales), SUM(ytdsales)

FROM customers
GROUP BY 1

The last command given is the EXIT command. This command ends the SQL/R process.

After the EXIT command you may add comment lines, since all information listed after
the EXIT command is ignored.

SQL/R A.01.00

The Usage of SQL/R 75

5.3 Use of Multiple Tables

In the previous examples we focused only on the data in an individual table. Normally you
would use the data from several tables to produce a list.

Assume that we want to produce a list of all customer sales orders. For this list we will
need the following information:

Table orders contains the following order heading information:

orderno order number
orderid ID-number for identifying the line items
custno customer number
ordertype order type (here: sales)
orderstat order status

Table lineitems contains information relating to the ordered items:

orderid ID-number for identifying the heading information
itemno item or part number
qty quantity
price price per unit
ic item count code
delivdate scheduled delivery date

Table parts contains the following information on the parts / items:

partno part number
descripa part description (first part)
descripb part description (second part)

Table customers contains the following customer related information:

custno customer number
matchcode customer id key
name1 customer name (first part)
name2 customer name (second part)

We will need to use data from all four tables to produce the list. It is not possible to use
the SELECT command to retrieve data from multiple tables. Therefore we must find a way
to link the four tables respective the data records in them. We can do this by using the
CREATE VIEW command.

By using the CREATE VIEW command, we are able to create a new record type, and
therefore a new table, also called a VIEW. This table contains the various record types and

SQL/R A.01.00

5.3 Use of Multiple Tables 76

exists only logically, not physically. The various record types are arranged in a specific
hierarchy (PATH) and are linked by common data items.

For the first step, we will link the order fields from the orders table to the related fields
from the lineitems table. The common data field is the ID-number orderid. The new
record type will be called temp.

So we build the the followingCREATE VIEW command:

CREATE VIEW temp PATH orders
TO lineitems WHERE orderid = orderid;

This link can be illustrated as follows:

orders

?
lineitems

lineitems.orderid = orders.orderid

We can now work with the new table temp as shown in the previous examples and define
the format of our list. The field ic does not have a definite value, but only a code. Therefore
we will use the FIELD command to define the item itemcount and assign a specific value.
In addition we will use the FIELD command to specify the total value of one line item
entry and to define the output format. Because the list will only contain sales orders, we
define the ordertype as “SO”. In summary, we will use the following list of commands:

SQL/R A.01.00

The Usage of SQL/R 77

OPEN DATABASE "../db/db";

FIELD delivdate DISPLAY AS DATE("%d%m%y");

FIELD icnt = IF (itemcount = "1", 10,

IF (itemcount = "2", 100,

IF (itemcount = "3", 1000, 1)))

DISPLAY AS INT(4);

FIELD amount = (qty * price / icnt)

DISPLAY AS MONEY(10, 2);

CREATE VIEW temp PATH orders

TO lineitems WHERE orderid = orderid;

SELECT

custno,

delivdate, orderno, ordertype, orderstat,

itemno, qty, price, icnt, amount

FROM temp

WHERE ordertype = "VK" AND itemno <>""; man31

The condition itemno <> "" appears to be unnecessary, but it is important for the following
reason: the CREATE VIEW command builds new records even if there are no line items for
a given order. In this case, the fields of the line item record part would be empty. In order
to limit the report to orders containing line items, it is necessary to include this condition
check.

SQL/R A.01.00

5.3 Use of Multiple Tables 78

The first enhancement to the list consists of including the item information. To do this, we
will expand our use of the CREATE VIEW command. We will broaden the record temp to
join the table lineitems to the item description table parts. The common field is therefore
the item number, which is called itemno in the table lineitems and called partno in the
parts table. The new CREATE VIEW command then reads as follows:

CREATE VIEW temp PATH orders
TO lineitems WHERE orderid = orderid

TO parts WHERE partno = itemno;

orders

?
lineitems

lineitems.orderid = orders.orderid

?
parts

parts.partno = lineitems.itemno

The recordtype temp consists of three record types, which are linked in sequential order.
The linking of different records can continue as necessary, as long as common data fields
exist.

SQL/R A.01.00

The Usage of SQL/R 79

We can now access the parts information table and expand our command list as follows:

OPEN DATABASE "../db/db";

FIELD delivdate DISPLAY AS DATE("%d%m%y");

FIELD icnt = IF (itemcount= "1", 10,

IF (itemcount= "2", 100,

IF (itemcount= "3", 1000, 1)))

DISPLAY AS INT(4);

FIELD amount = (qty * price / icnt)

DISPLAY AS MONEY(10, 2);

CREATE VIEW temp PATH orders

TO lineitems WHERE orderid = orderid

TO parts WHERE partno = itemno;

SELECT

custno,

delivdate, orderno, ordertype, orderstat,

itemno, descripa, descripb,

qty, price, icnt, amount

FROM temp

WHERE ordertype = "VK" AND itemno <>""; man32

To further enhance our list, we will include additional customer information. To access
this data, we need to define another link. The customer number custno is part of the order
heading record orders. Therefore we need to join the order heading orders to the customer
table customers. This link will supplement the existing link. We will create this link by
using the term ANDwithin theCREATE VIEW command. The term, AND, always indicates
a new path which has no relationship to the previously defined path.

SQL/R A.01.00

5.3 Use of Multiple Tables 80

The modified CREATE VIEW command is arranged as follows:

CREATE VIEW temp PATH orders
TO customers WHERE custno = custno
AND lineitems WHERE orderid = orderid

TO parts WHERE partno = itemno;

An alternative arrangement for this command is:

CREATE VIEW temp PATH orders
TO (lineitems WHERE orderid = orderid

TO parts WHERE partno = itemno)
AND customers WHERE custno = custno;

The parentheses are required in the alternative arrangement in order to clearly define the
connection. Without the parentheses the term ANDwould apply to the second TO statement,
creating an incorrect link. This would result in an error message, because the parts table
has no custno field. In certain cases, instead of an error you could produce an incorrect
list.

orders
�

�
�
�	

@
@
@
@R

lineitmes
lineitems.orderid = orders.orderid

customers
customers.custno = orders.custno

?
parts

parts.partno = lineitems.itemno

SQL/R A.01.00

The Usage of SQL/R 81

After modifying the CREATE VIEW command we can expand the SELECT command to
include the columns we want to display, as shown here:

OPEN DATABASE "../db/db";

FIELD delivdate DISPLAY AS DATE("%d%m%y");

FIELD icnt = IF (itemcount = "1", 10,

IF (itemcount = "2", 100,

IF (itemcount = "3", 1000, 1)))

DISPLAY AS INT(4);

FIELD amount = (qty * price / icnt)

DISPLAY AS MONEY(10, 2);

CREATE VIEW temp PATH orders

TO customers WHERE custno = custno

AND lineitems WHERE orderid = orderid

TO parts WHERE partno = itemno;

SELECT

custno, matchcode, name1, name2,

delivdate, orderno, ordertype, orderstat,

itemno, descripa, descripb,

qty, price, icnt, amount

FROM temp

WHERE ordertype = "VK" AND itemno <>""; man33

Now that we have defined what we want to display, the remaining task is to define how this
data will be displayed. This includes defining the format, the sort order, the usage of the
REPORT command, and the calculation and display of subtotals. We will create a form file
to define the output format. The use of a form file allows us to define and save complex
report formats involving many fields. In addition, the command list is more readable.

The results will be sorted by customer number. Within each customer order, the individual
line items will be sorted by scheduled delivery date where identical delivery dates occur,
and the line items will be further sorted by order number. A subtotal will be displayed for
each customer. Page headers will display the customer information for that page and there
will be a page break after each customer. The final page of the list will contain a grand total
for the report.

SQL/R A.01.00

5.3 Use of Multiple Tables 82

For the order status we will use the VALUES ARE rule of the FIELD command. The item
orderstat is a coded data field, therefore the field content is a code with a specific meaning.
The VALUES ARE rule allows you to convert this code into a more readable format in the
list.

The complete list of commands for this example is as follows:

OPEN DATABASE "../db/db";

SET DATE = "%d.%m.%y";

FIELD delivdate DISPLAY AS DATE("%d%m%y");

FIELD orderno DISPLAY AS (10);

FIELD qty DISPLAY AS DOUBLE(6, 0);

FIELD price DISPLAY AS MONEY(8, 2);

FIELD status = orderstat

VALUES ARE (0 = "OPEN",

5 = "IN PROCESSING",

6 = "RELEASED TO AB",

7 = "AB PRINTED",

8 = "RELEASED TO LS",

9 = "RELEASED TO RG",

10 = "INVOICE PRINTED",

12 = "ACCOUNTING NOTIF.",

13 = "TRANSACTION COMPL.")

DISPLAY AS LEFT(18);

FIELD itemcount = IF (ic = "1", 10,

IF (ic = "2", 100,

IF (ic = "3", 1000, 1)))

DISPLAY AS INT(4);

FIELD amount = (qty * price / itemcount)

DISPLAY AS MONEY(10, 2);

SQL/R A.01.00

The Usage of SQL/R 83

CREATE VIEW temp PATH orders

TO customers WHERE custno = custno

AND lineitems WHERE orderid = orderid

TO parts WHERE partno = itemno;

REPORT

SELECT

custno, matchcode, name1, name2,

delivdate, orderno, ordertype, status,

itemno, descripa, descripb,

qty, price, itemcount, amount

FROM temp

WHERE ordertype = "VK" AND itemno <>""

ORDER BY 1, 5, 6

CALCULATE

SUM(15) BREAK ON (1) PAGE,

SUM(15) BREAK ON REPORT

USING "man34.frm"; man34

The form file used in this example produces the following format:

SALES ORDERS BY CUSTOMERS Page: $page

Sorted by delivery date and order number Date: $date

Customer number: @1 Name: @3

Matchcode : @2 @4

DELIV. ORDER NUMBER ITEM NUMBER QTY PRICE/ IC AMOUNT

DATE STATUS DESCRIIPTION

%% End of heading

@5 @6 @9 @12 @13 /@14 @15

@8 @10

@11

%% End of detail line

Total for Customer @1 *** @15

%% End of break section SUM(15) BREAK ON 1 PAGE

T O T A L A M O U N T: *** @15

%% End of break section SUM(15) BREAK ON REPORT man34.frm

SQL/R A.01.00

5.4 Summary 84

5.4 Summary

The goal of this chapter was to present the most important features of the SQL/R language
through specific examples. For information on using syntax not covered in this chapter,
for example some arithmetic functions, please see the reference section of this manual.
The reference section includes a complete description of the syntax, including some simple
examples that aren’t always applicable to our example database.

To produce a list, first retrieve the database entries. When the entries have been correctly
selected, the calculations and links can be tested. Next perform the sort (ORDER BY) and
grouping (GROUP BY) on these entries. The sort and grouping functions are performed on
the retrieved entries before the output is produced. Depending on the complexity, processing
these functions can take a long time.

Formatting the report should always be the last step in developing a list and should not be
started before all data has been correctly generated.

In summary, the basic procedure for producing a report is as follows:

� Start SQL/R by entering the sqlr command from the HP-UX shell prompt.

� Define the necessary links of the tables using the CREATE VIEW command.

� Define the necessary virtual fields, including the appropriate calculations and defini-
tions using the FIELD command.

� Select the necessary data fields using the SELECT command and the WHERE condi-
tion.

� Test and correct the command list until the results are correct.

� Use the SELECT command within the REPORT command. Define subtotals and
totals using the CALCULATE rule.

� Define output formats using the FIELD command and in some cases the DISPLAY
AS rule.

� Enhance the REPORT command by using a form file (USING filename).

� Create the form file.

� Test theREPORT command by using the form file and checking for error-free output.

� Add the ORDER BY and GROUP BY options to the SELECT command.

� Finally define of the output device, the page width and length.

SQL/R A.01.00

6
Reference

This chapter describes the use of the SQL/R module and includes a definition of the elements
of the SQL/R language:

� Reserved words

� Identifiers

� Constants

� Arithmetic expressions

� Character strings

� Conditions

� Commands

This chapter is designed as a reference work. It is not a tutorial of the SQL/R language.

For an introduction to SQL/R, see chapter 3. For explanation of how to create a report, see
chapter 5.

6.1 Starting of SQL/R 86

6.1 Starting of SQL/R

The product SQL/R consists of two modules:

� the user interface sqlr (and sqlred)

� the execution module sqlrexec

The creation of a database query is initiated through the sqlr user interface. The sqlr
user interface is a shell script which can be customized. It calls thesqlredbinary program.
Pressing the function key labelled “Start SQL/R” starts the sqlrexec execution module
with the actual text.

The sqlr command syntax is shown here:

Usage: sqlr [-d database] [-p password] [file]

You can use the -d and -p options to reference a database and a database
password, respectively. This database is then opened each time sqlrexec is
initiated. In this case the OPEN DATABASE command must not be used in a
query.

for example:

sqlr customer

SQL/R A.01.00

Reference 87

The sqlrexec command syntax is shown here:

Usage: sqlrexec [-e][-n][-d dbnm][-p pswd] [batchfile [arg ...]]
options:
-help = show usage (this list)
-e = echo batch processing
-n = suppress program banner
-d dbnm = specify database name and path
-p pswd = specify database password

If batchfile is not present, input will be requested from stdin.
Optional arguments will be passed to batchfile as $1 ... $8.

You use the -d and -p options to open a database and enter the password. In
this case the OPEN DATABASE command is not available.

The -e option displays each line that is processed as it is entered.

The -n option suppresses the program banner for the report.

The first argument is the batch file name. If a batch file is specified, the report is
produced automatically. All other arguments are treated as optional arguments
$1 through $8, usable in the batch file e.g. to specify ranges for data selection.
These optional arguments are overwritten when the RUN command is used.

for example:

sqlrexec -n customers 1000 2000

SQL/R A.01.00

6.2 Definition of Terms 88

6.2 Definition of Terms

Field (or Item)

A field is the smallest logical unit of a database. Its contents are not limited to a word
or a numeric value, but can consist of several words,

for example Street: Martin Luther King Boulevard

Array

An array is a group of fields of the same type (also called elements) that can be
referenced with the same name and an index:

For example, when there are 12 values for monthly budget, the month of May:
budget[4], the month of January: budget[0]. The index of the first element is zero.

Record (or Entry)

A record is a collection of fields, and includes the access methods and dependencies.
Each field in a record has a unique name. Records are stored in tables.

For example: A customer record consists of: number, name, address, etc.
An obvious way to access a customer record is by using
the customer number

Table (or Dataset)

A table is a collection of records, arranged in columnar form.

Field Reference

A field reference is the name of a field and, optionally, fully referenced by adding a
table name. The complete reference is important when the same field exists in more
than one table:

for example custno, orders.custno or customers.custno

View

A view is a virtual table. In the simplest case, a view is a single table. The CREATE
VIEW command allows you to create a view consisting of several tables. The view
then appears as a single table that contains all the data fields of the individual tables.

Ocurrence

In cases where a single table is referenced several times in one view (for example,
access to an article using its parts list header and positions), it is necessary to define
an alternate name for each occurrence of a data item. This is to differentiate between

SQL/R A.01.00

Reference 89

fields with the same name. This alternate name is different from an alias, because
the alternate name is not merely an additional name for the same data, but rather an
access to different field contents as well.

Path

A path is the (logical) link between data tables. The type of link must be predefined
(in the database schema) before you use the CREATE VIEW command to link several
tables.

Alias

An alias is a pseudonym (alternate name) for a database field and is defined using the
FIELD command (see page 108).

SQL/R A.01.00

6.3 Reserved Words 90

6.3 Reserved Words

Reserved words are SQL/R predefined words with a special meaning. These words are not
case sensitive.

Reserved Words

ALL
AND
ARE
ASC
ASCII
AVG
BETWEEN
BREAK
BY
CALCULATE
CENTER
CLOSE
COUNT
CREATE
DATABASE
DATE
DAY
DEFINE
DESC
DESCRIBE
DIF
DISTINCT

DOUBLE
EXIT
FIELD
FILE
FIXED
FLOAT
FROM
GROUP
HAVING
HELP
IF
IN
INT
INTO
LEFT
LENGTH
LIKE
LOCALE
LONG
LOWER
MACRO
MAX

MIN
MONEY
MONTH
NOT
NULL
OPEN
OCCURRENCE
OF
ON
OR
ORDER
OUTPUT
PAGE
PATH
PRINTER
REPORT
RIGHT
RUN
SELECT
SET
SHORT
SHOW

SKIP
STRLEN
SUBSTR
SYSDATE
SUM
TERMINAL
TIME
TITLE
TO
TODAY
TRANSLATE
TRIM
UPPER
USING
VALUES
VIEW
WHERE
WIDTH
XOR
YEAR

SQL/R A.01.00

Reference 91

6.4 Data Types

The HP Eloquence database supports the following data types:

Data Type Description
String Xn a character string consisting of any chars
Integer I �32768 . . . 32767
DInteger D �231 . . . 231 � 1

Short S floating point number, 6 digits
Long L floating point number, 12 digits

SQL/R uses its own data types, which include the HP ELOQUENCE data types.

SQL/R supports the following data types:

Data Type Value Range HP Eloquence

char a character string of any chars except binary zero String
short �32768 . . . 32767 Integer
int �231 . . . 231 � 1 DInteger
long �231 . . . 231 � 1 DInteger
float floating point number, 7 digits Short
double floating point number, 15 digits Long
date short, int, long, float, double
time short, int, long
fixed short, int, long
money float, double

The data types DATE, TIME, FIXED, and MONEY are logical data types. They describe,
how the corresponding field contents are interpreted and presented. They don’t describe
the internal storage format nor the value range (see also FIELD command, page 108).

DATE The field contents are presented as a date. The internal format and output
format are defined by using the FIELD command.

TIME The field contents are presented as time (HH:MM). The corresponding field
type must be short, long, or integer and be defined as follows: field = 100 *
hours + minutes.

FIXED The field contents are presented as a fixed point number. The corresponding
field type must be short, long, or integer. The field contents are divided by

SQL/R A.01.00

6.4 Data Types 92

10n and then output. The n represents the desired number of positions after
the decimal point.

MONEY The field contents are presented as a monetary amount. The output format
depends on the configured user environment (language).

Note: Character strings are internally ended with a null character. Therefore, it is impossible
to correctly display a character string that contains such a binary zero.

Note: The floating and double data types support the representation of exponents (e.g.
1E10). This is not possible with SQL/R.

SQL/R A.01.00

Reference 93

6.5 Identifiers

An identifier consists of a maximum of 31 characters. These characters can be alphabetic,
numeric, or an underline (). The identifier must always start with an alphabetic character.

Identifiers are not case sensitive. Therefore the identifiers “Name”, “NAME”, “name” are
treated the same.

Identifiers can be used for all expressions such as table and fields names. The only limitation
is that no SQL/R reserved words are permitted.

Identifiers consisting of a reserved word must be preceded by an underline (). For example
“ time” is an identifier and not a reserved word.

6.6 Constants

Constants are values that are constant, regardless of database values. Constants can consist
of various data types, e.g. numbers, character strings, dates, times.

6.6.1 Numeric Constants

Numeric constants have the following format:

[+/�]nnn[.nnn]

Constants containing a decimal point are treated as double data types. All other numeric
constants are treated as integer values.

The period ’.’ is used to represent the decimal point, regardless of the LOCALE value
selected.

1234 integer
�123 integer
12.34 double

1.2345 double
�1234.567890 double

123456 integer

SQL/R A.01.00

6.6 Constants 94

6.6.2 Character String Constants

A character string constant is a character string that begins and ends with quotation marks.
Either single or double quotation marks can be used. Note that the same quotation mark
must be used at both the beginning and the end of the string.

A character string constant can contain a maximum of 511 characters.

To use a quotation mark as a literal within the string, precede the quotation mark with a
backslash (\).

’This is a character string’
"This is a \"new\" string"

6.6.3 Date Constants

Date constants can consist of either the European or the American format. Date constants
are reformatted into an internal format. This is necessary for performing operations such
as comparisons involving database fields that have been defined as of type date with the
FIELD . . . DISPLAY AS DATE command.

@MM/DD/YY American format
@DD.MM.YY European format

A zero (0) can be used to represent a null date.

6.6.4 Time Constants

Time constants are reformatted into an internal format. This is necessary for performing
operations such as comparisons and caluculations. Time constants are represented using
the following formats:

@HH:MM
@HHMM

SQL/R A.01.00

Reference 95

6.7 Arithmetic Expressions

Arithmetic expressions are used to perform calculations involving database variables and
constants.

Arithmetic Expression = Operand [Operator Operand] . . .

Operand =

8>>>><
>>>>:

Constant
Field Reference
Alias
Function

(Arithmetic Expression)

9>>>>=
>>>>;

Operator = f + | - | * | / g

Function =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

8>><
>>:

AVG
MAX
MIN
SUM

9>>=
>>;
([ALL | DISTINCT] Arith. Expression)

COUNT([ALL | DISTINCT] f * | Field Name g)
STRLEN(String Expression)8<
:

DAY
MONTH
YEAR

9=
; (Date Field)

IF(Condition, Arith. Expression, Arith. Expression)

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

SQL/R A.01.00

6.7 Arithmetic Expressions 96

A field reference is the name of a database item. When the field is an array, the field
reference refers to a single element of the array. If the individual element is not specified,
then the first element of the array is used.

A field name can be used in several tables, views, and databases. If several tables are used
in a command, you must distinguish the field names by preceding the field name with the
table name (e.g. item.number and customer.number).

Order of precedence for operators:

() parentheses
+, � positive/negative marks
�, = multiplication and division
+, � addition and subtraction

Operators with equal priority are calculated from left to right.

6.7.1 Arithmetic Functions

SUM([DISTINCT] arith. expression)

calculates the total of the arithmetic expression for all selected entries. This
function can only be used with numeric expressions (including time values).

AVG([DISTINCT] arith. expression)

calculates the average value of the arithmetic expression for all selected entries.
This function can only be used with numeric expressions (including time
values).

MIN(arith. expression)

calculates the minimum value of the arithmetic expression for all selected
entries. This function can only be used with numeric expressions (including
date and time values).

MAX(arith. expression)

SQL/R A.01.00

Reference 97

calculates the maximum value of the arithmetic expression for all selected
entries. This function can only be used with numeric expressions (including
date and time values).

COUNT([DISTINCT | ALL] f* | field nameg)

counts the number of entries.

STRLEN(string expression)

calculates the length of the specified character string.

These arithmetic functions are used to develop the results of a SELECT command calcu-
lation. The sets of entries needed for the calculations are produced by using either the
GROUP BY statement within a SELECT command or by using the CALCULATE statement
of a REPORT command.

When the DISTINCT option is used, only unique entries are used to calculate the results.

The DISTINCT option can only be used once within a SELECT command.

Examples of arithmetic expressions and functions are shown here:

SELECT SUM(items.quantity * price);
SELECT AVG(DISTINCT customers.turnover[1]);
SELECT COUNT(*) FROM customers;

6.7.2 Date Functions

MONTH(date field) returns the month (1-12)
YEAR(date field) returns the year (4 digits)
DAY(date field) returns the day (1-31)

The date functions produce integer values that can be used for calculations. The parameter
is always a date, the result of the function is the day, month or year extracted from this date.

An example of a date function is show here:

SELECT YEAR(orders.date), items.sales
FROM orders;

SQL/R A.01.00

6.8 String Expressions 98

6.8 String Expressions

String expressions are specified the same way as string constants and fields.

string expression = operand [& operand] . . .

operand = f string constant | field reference | alias | function g

function =

8>>>><
>>>>:

8<
:

UPPER
LOWER
TRIM

9=
; (string expression)

SUBSTR(string expression, start, length)
IF(condition, string expression, string expression)

9>>>>=
>>>>;

The ampersand (&) operator is used to connect several character strings.

SQL/R A.01.00

Reference 99

6.8.1 String Functions

UPPER(string expression)

shifts all lower case characters to upper case. Characters with an umlaut (")
are handled as specified by the configured environment (see appendix D).

LOWER(string expression)

shifts all upper case characters to lower case. Characters with an umlaut (")
are handled as specified by the configured environment (see appendix D).

TRIM(string expression)

right truncates all blanks (space characters) back to the last nonblankcharacter.

SUBSTR(string expression , position , length)

uses the specified string to produce a substring. The substring starts at the
position specified and continues for the length specified. Note that the first
position of a character string is 0.

Examples of string expressions and functions are shown here:

"Mr. " & customers.name
UPPER("New Text")
TRIM(SUBSTR(customers.name, 0, 20) & customers.firstname)

6.9 Condition Functions

The IF command is used to select one of two possible expressions based on the result of
a logical expression. Several IF commands can be nested or combined with a SELECT
command.

IF(condition, expression, expression)

When the condition is TRUE, then the first expression is activated. If the condition is
FALSE, then the second expression is evaluated. Both expressions must produce a result
of the same data type.

SQL/R A.01.00

6.10 Conditional Expressions 100

SELECT IF (quantity < 100, rebate[0],
IF (quantity < 500, rebate[1], rebate[2]))

"actual rebate"
FROM orders

6.10 Conditional Expressions

Conditional (logical) expressions result in a value of TRUE or FALSE. These expressions
are part of IF and WHERE commands or HAVING rules within the SELECT command.

Only those entries for which the conditional expression is true within theSELECT command
are further processed. Conditional (logical) expressions are defined as shown here:

Conditional

Expression
= logical operand

2
4
8<
:

AND
OR
XOR

9=
; logical operand

3
5 . . .

logical operand =

8>>>>>><
>>>>>>:

expression [NOT] logical operator expression
expression [NOT] BETWEEN constant

AND constant
expression [NOT] IN(constant [, . . .])
string expression [NOT] LIKE "pattern"
(conditional expression)

9>>>>>>=
>>>>>>;

logical

operator
=

8>>>>>><
>>>>>>:

= (equals)
< (less than)
> (greater than)
<= (less than or equal to)
>= (greater than or equal to)
<> (not equal to)

9>>>>>>=
>>>>>>;

Boolean operators

NOT (TRUE, when the operand is FALSE)
AND (TRUE, when both operands are TRUE)
OR (TRUE, when one or both operands are TRUE)
XOR (TRUE, when only one of the operands is TRUE)

Results of linking with Boolean operators:

SQL/R A.01.00

Reference 101

operand 1 operand 2 AND OR XOR
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE

The order of precedence for Boolean operators is shown here:

NOT
AND
OR, XOR

Operators of equal value are evaluated from left to right.

A conditional expression consists of a set of comparisons which produce either a TRUE
or FALSE result and which are linked by Boolean operators. Each comparison may itself
consist of a conditional (logical) expression.

In addition to the general comparisons (=, <, <=, >, >=, <>), there are three special
comparisons, BETWEEN . . . AND, IN and LIKE.

BETWEEN . . . AND determines, whether or not the value produced by an expression falls
within a specified range.

The operator IN produces a value of TRUE when the value produced by an expression
appears in a previously defined list of specific values.

The LIKE operator allows the use of wildcards in string expressions. Each question mark
(?) in the character string represents one character, an asterisk (*) is used to represent any
number of characters. The specified expression must represent a character string.

SELECT customer, item FROM orders
WHERE item BETWEEN 1000 AND 9000

OR customer LIKE "M*er";
SELECT customer, item FROM orders

WHERE item IN (1000,2000,3000);

SQL/R A.01.00

6.11 The CLOSE DATABASE Command 102

6.11 The CLOSE DATABASE Command

CLOSE DATABASE ;

The CLOSE DATABASE command closes all open databases. This is necessary in order
to be able to specify a new OPEN DATABASE command.

When SQL/R is exited, all open databases are automatically closed.

SQL/R A.01.00

Reference 103

6.12 The CREATE VIEW Command

CREATE VIEW view name PATH occur spec path group

[DESCRIBE AS "description"] ;

occur spec =

�
OCCURRENCE occur name OF
occur name =

�
record name

path group = TO path element [AND path element [AND . . .]] [TO . . .]

path element =

�
(path element path group)
occur spec WHERE field name = [occur name.] field name

�

The CREATE VIEW command is used to define a certain view in the database. This view
will build a logical record made up from the fields of various tables. It exists only logically,
and not physically, in the database.

Each view has a view name and consists of records from various tables linked by a
hierarchy (called PATH) with common data items (fields).

The view created using the CREATE VIEW command is treated as if it were a real table
where each record contains all the data items (fields) defined in the records you included in
the hierarchy.

The PATH rule specifies the access order of the records contained in the view. In addition,
the PATH defines the hierarchy within the view. The PATH follows a line from the first
record to the last record, where records are linked through a common data field. The first
record record name can be assigned a new name within the view by using either the
OCCURRENCE occur name OF or occur name = option.

Several records on the same level of the hierarchy can be linked by using the AND rule. In
some cases, it is necessary to use parentheses to preserve the hierarchy in the view. The use
of parentheses is shown in the examples that follow.

The WHERE rule is used to specify which fields are the common data items to form the link.

For example:

In this first example, the tables orderhead and orderpos are linked by using
the common item order no.

CREATE VIEW orders

SQL/R A.01.00

6.12 The CREATE VIEW Command 104

PATH orderhead
TO orderpos WHERE order_no = order_no;

The next example shows a continuation of the hierarchy definition. In this
example, the view is a combination of the records orderhead, orderpos and
items.

CREATE VIEW orders_and_items
PATH orderhead
TO orderpos WHERE order_no = order_no

TO items WHERE item_no = item_no;

The following examples illustrate the branching of a path. The view or-
ders and customers consists of linkages of equal priority, namely orderhead

with orderpos and orderhead with customers.

CREATE VIEW orders_and_customers
PATH orderhead
TO orderpos WHERE order_no = order_no
AND customers WHERE cust_no = cust_no;

The next example demonstrates how to use parentheses to achieve specific
results.

CREATE VIEW orders_items_text
PATH orderhead
TO (orderpos WHERE order_no = order_no

TO items WHERE item_no = item_no)
AND text WHERE text_no = text_no;

In the previous example, orderhead was linked with orderpos, then orderpos
was linked with items, and finally orderhead was linked with text.

CREATE VIEW orders_items_text
PATH orderhead
TO orderpos WHERE order_no = order_no
TO items WHERE item_no = item_no
AND text WHERE text_no = text_no;

SQL/R A.01.00

Reference 105

In this example, orderhead is linked with orderpos, then orderpos is linked with
items and finally orderpos is linked with text.

In cases where there are multiple references to the same table within one line, it
is necessary to assign an individual name to each occurence of the data record.

CREATE VIEW items_items
PATH items
TO OCCURRENCE material OF items

WHERE item_no = material_no;

In this example, the data field material no of the table items is used for a
second access to the table items. For this second access, the data record is
referenced by the temporary name material.

SQL/R A.01.00

6.13 The DEFINE Command 106

6.13 The DEFINE Command

DEFINE ["]macro name["] AS "macro definition"
[DESCRIBE AS "description"];

The DEFINE command enables you to use a short notation ("macro name") to represent
specific text. These short notations are called macros. During processing the macro is
automatically replaced by its qstringdefinition text.

The macro name can consist of any words except reserved words, or existing table names,
field names, view names, etc.

Macro names which are enclosed in quotation marks are not expanded.

Macros can be nested so that one macro can reference other macros. The maximum number
of nesting levels is 8 levels.

The maximum length of a macro definition (the text represented by a macro) is 511 charac-
ters. To use quotation marks within a macro definition, precede each quotation mark with
a backslash (\).

Example:

DEFINE cust_fields AS
"customers.no, customers.name, customers.city";

DEFINE cust_list AS
"SELECT cust_fields FROM customers ORDER BY customers.no"

Note that the first macro is nested within the second macro definition.

SQL/R A.01.00

Reference 107

6.14 The EXIT Command

EXIT;

The EXIT command ends the SQL/R process.

In a batch file, all lines after the EXIT command are ignored. This feature can be used for
comment lines.

6.15 The HELP Command

HELP [fidentifier | stringg];

The HELP command can be used alone or with an identifier or string. When the
command is used alone, a short description of the SQL/R syntax is displayed. When the
HELP command is followed by an identifier or string, the command shows if the identifier
or string is a field, record, view, macro (strings only) or alias.

When the type represented by the identifier or string is known, you can use the SHOW
command to get complete information about it.

SQL/R A.01.00

6.16 The FIELD Command 108

6.16 The FIELD Command

FIELD f alias = expression | field name g

[VALUES ARE([f "string" | num g =] "string" [, . . .])]
[DISPLAY AS [LEFT | CENTER | RIGHT] format]
[DESCRIBE AS "description"] ;

format =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(field length)
INT(field length)
LONG(field length)
FLOAT(field length, decimals)
DOUBLE(field length, decimals)
FIXED(field length, decimals)
MONEY(field length [, decimals])
DATE [("date format" [, field length])]

[FROM f SYSDATE | YYYY g]
TIME [(field length)]

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

The FIELD command can be used in the following ways:

� to define an alternate name or pseudonym for a field or expression

� to establish a value for a coded data field

� to specify the output format of a data field

You can also use the DESCRIBE AS rule to describe fields. This description is displayed
by using the SHOW FIELD command.

6.16.1 FIELD and Expression Pseudonyms

Pseudonyms are defined using the “alias= expression” parameter of theFIELD command.
The alias is a name that is used to represent an expression in a SELECT command.

In the simplest case, expression is the name of a data field. You can also use several
pseudonyms to represent a single data field. Pseudonyms are often used to define more
descriptive names for data fields (i.e. elements of an array) or to define different output
formats for an item.

SQL/R A.01.00

Reference 109

If you use the FIELD command to define a pseudonym for a data field, you can use the
VALUES ARE rule. However, you can not use the VALUES ARE rule when defining a
pseudonym for an expression.

Examples:

FIELD part_number = items.item_no;
FIELD salesJanuary = customers.turnover[0];
FIELD salesFebruary = customers.turnover[1];

FIELD salesMay = customers.turnover[4]
DESCRIBE AS "May Sales";

6.16.2 The VALUES ARE Rule

The VALUES ARE rule allows you to translate data values in a specified field to other
values.

A coded value is either a character string or a number (SHORT, INT or LONG).

A “translated” value can be defined for each coded value.

The following conditions apply:

� A pseudonym (alias) must be specified for the data field. Accessing this alias will
return the translated value. A reference to the (original) field name will return the
(untranslated) coded value.

� The DISPLAY AS rule defines the maximum width of the result.

� Coded values with no specified replacement text are converted to an empty field.

For example:

FIELD color = colornum
VALUES ARE (0 = "NONE", 1 = "RED", 2 = "YELLOW", 3 = "BLUE")
DISPLAY AS LEFT(7);

In this example, the coded values are used for the alias color. The colornum data field
remains unchanged.

SQL/R A.01.00

6.16 The FIELD Command 110

FIELD street = customers.street
VALUES ARE ("st"= "street", "rd" = "road", "dr" = "drive")
DISPLAY AS LEFT(10);

FIELD city = customers.city
VALUES ARE (1 = "New York", "Chicago", "Denver",

"San Francisco", "Seattle",
20 = "Atlanta")

DISPLAY AS LEFT(20);

The city field contains a coded value between 1 and 20, where value=1 represents “New
York” and value=20 represents “Atlanta”. The values 6 through 19 have not been defined.

If the coded value is numeric, you can define a sequence of values and a starting value. If
no starting value is defined, then the first numeric value is 0. The remaining numeric values
follow in ascending order from left to right. Alternately, you can define a specific value in
the list, in which case the next value to the right is incremented by 1.

6.16.3 The DISPLAY AS Rule

The DISPLAY AS rule defines the output format of the data fields or expressions. The
output of a value can be defined within the output width asLEFT justified,CENTER justified,
or RIGHT justified. If the actual width of a value is wider than the defined output format,
then the output will be truncated without an error message. The DISPLAY AS rule is
important for correctly displaying DATE, FIXED, and MONEY values.

The following table illustrates the SQL/R supported data types and their default width,
default number of decimal places and the default justification:

data type output width decimal places justification

char string length – left
short 6 0 right
int 11 0 right
long 11 0 right
float 11 2 right
double 16 2 right

The formats FIXED, MONEY, DATE and TIME are not available in the HP ELOQUENCE
database. Therefore it is necessary to define these formats using the FIELD . . . DISPLAY

SQL/R A.01.00

Reference 111

AS command1.

The FIXED data types are stored as INT or LONG values. Therefore it is necessary to use
the DISPLAY AS FIXED(. . .) command to define the number of decimal places in the
output.

The MONEY data types are formatted according to the work environment, which is deter-
mined by the selected language (see Appendix D).

The DISPLAY AS DATE rule is used to define both the input and the output date formats.
The format stringdate format contains a user specified date and time format (see Appendix
B). The date format string also can contain other user specified text to be output as a date
(e.g. “Today is %d.%m.%y”). If the date format is not defined, the date format defaults to
the value set using the SET DATE command. In addition, the output width can be defined.

You can also use theFROM option to define the format in which the date is stored in database.

Syntax Description Data type
default YYMMDD LONG
FROM SYSDATE number of seconds since Jan 1,1970 LONG
FROM YYYY number of days since Jan 1, YYYY SHORT, INT, LONG

Fields containing a time value in the form HHMM can be displayed using the DISPLAY
AS TIME command.

1It is also possible to define these formats using the format numbers contained in the schema file or specified
with DBMODS (see Appendix E).

SQL/R A.01.00

6.17 The OPEN DATABASE command 112

6.17 The OPEN DATABASE command

OPEN DATABASE "database" [AS "password"] [, . . .] ;

A database must be opened before it can be used. The OPEN DATABASE command is
used to open the database. You can also specify the path and password for the database
using this command.

For example:

OPEN DATABASE "abc";
OPEN DATABASE "/usr/pps/db/pps";
OPEN DATABASE "/usr/sad/sad" AS "SECRETARY";
OPEN DATABASE "DB1" AS "ALL", "DB2" AS "ALL";

Before you open any additional databases, you must first close all open databases. The
CLOSE DATABASE command is used to do this.

6.17.1 Multiple Databases

When several databases are open, conflicts in field and table names can occur. For example,
a field called “NR” can occur in several databases. The same conflict can occur with table
names.

If the same field name occurs in several databases, it is important that you always reference
the item using both the table name and the field name, so that the correct field is used (e.g.
orders.part no).

If the same table name occurs in several databases, SQL/R joins the table name and the
database name using an underline character (). For example, the table CUSTOMERS in
database DB1 is referenced as CUSTOMERS DB1.

6.17.2 The QIF File

When a database is opened, SQL/R checks for the existence of a file called database
name.qif. If this batch file is found, the commands in the batch file are executed.
Therefore you can use this .qif batch file to automatically execute certain (e.g. FIELD)
commands, when the database is opened.

SQL/R A.01.00

Reference 113

The QIF file name must be in the following format:

databasename.qif oder DATABASENAME.QIF

The name must be either all upper case or all lower case.

SQL/R searches for the existence of a QIF file in the following search order:

database path
path specified through environment variable QPATH
local directory

SQL/R A.01.00

6.18 The REPORT Command 114

6.18 The REPORT Command

REPORT SELECT [CALCULATE field calc [, . . .]]2
4 INTO

8<
:

TERMINAL
PRINTER
[ASCII | DIF] FILE "filename"

9=
;

3
5

[report fmt]
[USING "report form"] ;

field calc =

2
66664

8>>>><
>>>>:

SUM
AVG
MIN
MAX
COUNT

9>>>>=
>>>>;
(field ref [, . . .]) ["row label"]

3
77775

BREAK ON

�
(field ref [, . . .])
REPORT

� �
SKIP [n]
PAGE [n]

�

report fmt = [TITLE AS "report title"]
[DATE AS f TODAY | "date string" g]
[LENGTH = num]
[WIDTH = num]

The REPORT command is used to format the results produced by a SELECT command.
A report is created according to the user requirements. The optional rules of the REPORT
command allow you to execute the following functions:

� Calculate field values including subtotals and totals

� Direct the output to various output devices

� Format the output using various options

� Create and use specific format files to define the output

6.18.1 The CALCULATE Rule and the BREAK ON Rule

The CALCULATE rule is used to perform calculations on the item values of the data fields
retrieved using the SELECT command. The results of the calculations are further processed
in the report.

The following calculations can be used:

SQL/R A.01.00

Reference 115

SUM = the sum of all values
AVG = the average of all values
MAX = the maximum value
MIN = the minimum value
COUNT = the number of values

The calculations are specified using arithmetic functions and the fields. The list of fields is
enclosed in a set of parentheses. These fields are referenced using either the field name or
the position number of the field as it appears in the previous SELECT command. You can
execute several calculations within one REPORT command. The individual calculations
are separated by commas. The results of these calculations are displayed in one line in the
order that they appeared in the REPORT command.

The BREAK ON rule allows you to define which fields are used for the calculations. You
specify the field references the same way as in the CALCULATE rule. All results of the
SELECT command are grouped by identical values for the fields defined in the BREAK ON
command. Each calculation is performed using the values of one of these groups. When
the value of a field in the BREAK ON field list changes, a break occurs and the results of
the calculation are reported. After the results are reported, the calculations are performed
on the next group and these results are displayed. To perform a calculation on all the results
produced by the SELECT command, use the BREAK ON REPORT rule.

You can also use the BREAK ON rule to define a line-break or page-break. The SKIP[n]
option advances the report output by n lines. Similarly the PAGE[n] option advances the
report output n pages. If no number is specified after the SKIP or PAGE option a default
value of one is used. The BREAK ON rule allows you to define line and page breaks without
performing any calculations.

If theBREAK ON rule contains a list of field references, then the SELECT command should
be ordered by these fields.

When the results of the calculations are reported, the calculation function used is displayed
at the end of the line. This function name can be replaced with your own text which must
be listed directly after the CALCULATE rule.

For example:

The SUM(3) statement is a short way of specifying a total. The “3” indicates the third field
in the SELECT command (amount) counting from left to right.

REPORT
SELECT company, orderno, amount, month
FROM orders ORDER BY company, month

SQL/R A.01.00

6.18 The REPORT Command 116

CALCULATE
SUM(3)
BREAK ON (month, company) SKIP 3,

SUM(3) "Sales per Company"
BREAK ON (company) SKIP 3,

SUM(3) "Total Sales"
BREAK ON REPORT PAGE,

COUNT(orderno) "Number of Orders"
BREAK ON (company),

COUNT(orderno) "Number of Orders"
BREAK ON REPORT;

6.18.2 Output Devices

The default output device is the output device defined using the SET OUTPUT command.
This is generally the screen display. The INTO rule redirects the output for a particular
REPORT command.

The output devices are described in the SET OUTPUT command section (see page 127).

6.18.3 Number of Lines per Page

The number of lines per page for a specific report can be defined using the SET LENGTH
command. This allows you to override the default page length.

If the report is output to a screen display, you must hit the RETURN key after each page to
display the next page.

6.18.4 Output Width

The WIDTH rule overrides the default line width for a specific REPORT command. The
function of this command is similar to the SET LENGTH command. Output lines which
are longer than the defined value are right-truncated.

If no USING rule has been defined, the default line width is used to center the report title
and to right-justify the page number.

SQL/R A.01.00

Reference 117

6.18.5 Output Format

There are two methods for formatting the output produced by a query:

� Using a form file is described in the next section (the USING rule).

� Formatting the page heading of an individual report

You can define a report title by using the TITLE AS rule. The title is centered at the top
of each page according to the page width. The individual lines of a multiple line heading
are separated by a slash (/).

For example:

The command
TITLE AS "Order Status/All Product Groups/Sorted by Customers"

produces the following heading:

Order Status
All Product Groups
Sorted by Customers

You can use the DATE AS rule to display either the current date (DATE AS TODAY using
the predefined date format) or a specific date format.

The date format can be either a specific date or time format (see Appendix B) or a
combination of user defined text and a date (e.g. “Today is %m/%d/%y”).

The output always begins in column one of the first line of each page.

For example:

REPORT
SELECT company, orderno, amount

FROM orders
ORDER BY company

TITLE AS "Order Status/Sorted by Customers"
INTO ASCII FILE "status.out"
DATE AS "Date: %x"

SQL/R A.01.00

6.18 The REPORT Command 118

LENGTH = 72
WIDTH = 80;

6.18.6 The Use of Form Files

The USING rule is used to specify the text file containing the output format specifications.
This text file, called a “form file”, specifies how the results of the REPORT command will
be appear in the output list.

The form file consists of sections, separated by lines, beginning with two percent signs
(%%). The rest of the line is ignored.

The first section defines the title, date, and page number. This information appears at the
top of each page.

The second section contains the formatting instructions for the output lines resulting from
the SELECT command.

To allow for calculations, the form file contains a "break" section for each BREAK ON rule.
This break section defines the output of the calculated values. These break sections must
appear in the same order in the form file as the corresponding BREAK ON rule lines appear
in the REPORT command.

You can also define an “end” section in the form file. The text defined in the end section
will appear at the bottom of each output page.

Field values are defined in the form file by using either the field name or the field position
number of the SELECT list. Field values are preceded by the @ character (e.g. @2 or
@custno).

The field contents of the SELECT command can be referenced in the first and second
sections. The values in the heading section are always the actual values at the time that the
heading is printed. The values in the second section are printed separately for each record
resulting from the SELECT command.

The field references of the "break" sections must be consistent with the field references of
either the corresponding function or break conditions of the BREAK ON rule. The break
section is output whenever the correspondingBREAK ON occurs (i.e. when a new group is
output). A corresponding SKIP or PAGE command is executed as defined in the section.

In addition, there are three special functions related to form files. These functions are the
$page, $date and $n functions.

SQL/R A.01.00

Reference 119

A $page reference specifies that a sequential page number is output for each page. The
$page reference can be used in either the page header or the page footer. Page numbers
can be up to four characters in length and are left justified.

The $date reference specifies that a date is output. This reference can appear in any
section of the form file. The date format can be defined with the DATE AS date format

rule, provided that the date format is defined before the USING rule is specified. If no
date format is specified with the DATE AS rule, then the date format defined with the SET
DATE command is used.

A $n reference represents the argument specified either in the command line or the RUN
command. This is important for specifying condition values, ranges and comments.

First, the REPORT command:

REPORT
SELECT name, street, zip, city, orderno, ordate, amount

FROM orders
ORDER BY 1, orderno

CALCULATE
COUNT(5) BREAK ON (1),
SUM(7) BREAK ON (1) PAGE

USING "sales.frm"

These commands use the form file “sales.frm”. The contents of this form file are shown
here:

$date List of Orders $page
Sorted by Customers

Customername...: @1 Street........: @2
Zip City......: @3 @4

Order no Date Sales amount in $

%% End of the page heading section
@orderno @6 @amount

%% End of the detail line section

SQL/R A.01.00

6.18 The REPORT Command 120

Number of Orders: @5
%% End of BREAK section relating to COUNT(5)

Value of Orders: @7
%% End of BREAK section relating to SUM(7)

SQL/R A.01.00

Reference 121

6.19 The RUN Command

[RUN] file name [("arg" [, "arg"] . . .)];

The RUN command is used to execute a QRF (Query Routine File) within SQL/R. These
QRF files are ASCII text files containingone or more SQL/R commands. They are executed
as batch files and use the following naming convention:

name.qrf or NAME.QRF

The file name must be either all lower case or all upper case.

SQL/R searches for the QRF file in the following search order:

database path
environment variable QPATH
local directory

The use of the RUN command is optional; only the QRF file name is needed to execute the
QRF file.

Arguments can be specified as text strings enclosed in quotation marks. When multiple
arguments are used, these arguments are separated by commas. In the .qrf file, arguments
are referenced by a $n, where n represents the number of the n-th argument in the list.
When a QRF file is executed, each $n is replaced by the corresponding string passed as a
parameter.

QRF files can be nested, but secondary QRF files can only reference the arguments used by
the primary QRF file.

The following example shows the contents of the QRF file “test.qrf”:

SELECT number, name, city FROM customers
WHERE city LIKE "$1";

This QRF file can be executed as shown here:

RUN test ("Dallas*");

SQL/R A.01.00

6.19 The RUN Command 122

This produces the following SQL/R command:

SELECT number, name, city FROM customers
WHERE city LIKE "Dallas*";

SQL/R A.01.00

Reference 123

6.20 The SELECT Command

SELECT [ALL | DISTINCT]
f* | expression ["alternate heading"] [, . . .] g
[FROM view name]
[WHERE cond expression]
[GROUP BY col ref [, . . .] [HAVING cond expression]]
[ORDER BY col ref [ASC | DESC] [, . . .]] ;

The SELECT command is used to select specific data from a table or view. Each output
line corresponds to a retrieved table or view entry. Each column contains the result of a
data field or expression of a table or view entry.

The selected data fields are listed after the SELECT or SELECT DISTINCT command
and are separated by commas. An expression can be the name of a data field, alias, or
expression (consisting of data fields used in a view). The actual construction of arithmetic
expressions and character strings are described on pages 95 and 98.

A SELECT command can contain a maximum number of 64 data fields. To select all the
fields of a view, you can use an asterisk (*) instead of listing all the fields. The fields of an
array are accessed using an index. If only the name of the array is specified, by default the
first field is used.

The SELECT command output appears in page format according to the page length defined
with the SET LENGTH command. The page heading contains the page number and
column headings, where the column headings consist of either a specified heading or the
alternate headings. The output width of a column is controlled by the maximum width
defined by the field length or column heading.

6.20.1 The DISTINCT Rule

The DISTINCT rule specifies that duplicate output lines are reported only once. Use of
this rule results in a longer processing time, because the output is first sorted to locate all
duplicate entries. The DISTINCT rule can also be used in calculations. It is important that
only one DISTINCT rule is used in each SELECT command.

6.20.2 The FROM Rule

The FROM rule is used to define the data table used for the selection. This table can be
either a data record or a virtual table which has been created using the CREATE VIEW

SQL/R A.01.00

6.20 The SELECT Command 124

command.

SELECT custno, name, city FROM customers
WHERE city LIKE "Dallas*";

Access to the table is sequential, regardless of whether the table is a data record or the first
table of a view. Access to all subsequent tables in the view depends on the path definition
of the CREATE VIEW command. You can specify that the access is performed using a
key field. This will optimize the actions of the WHERE command which sorts, groups, and
evaluates the entries.

6.20.3 The WHERE Rule

The WHERE rule is used to set conditions for the data selection. The actual format of
the conditional expressions which contain the comparison of data fields and constants, is
described on page 100.

SELECT custno, name, city FROM customers
WHERE name IN ("Brown","Smith","Jones");

6.20.4 The GROUP BY Rule

The GROUP BY rule is used to group output lines which contain identical values in the
specified columns (col ref). The other columns of each output line have either a constant
value or are the result of a calculation (e.g. SUM, MAX). These lines are the result produced
by the SELECT command. The column reference can be either a field name, an alias, or a
number which refers to the position of the field in the list of the expressions.

SELECT city, SUM(sales), AVG(sales)
FROM customers
GROUP BY city;

SQL/R A.01.00

Reference 125

6.20.5 The HAVING Rule

The HAVING rule is similar to the WHERE rule in that both are used to define which result
lines fit certain conditions (filtering). The conditions specified with the HAVING rule are
processed after the action of the GROUP BY command. The conditional expressions are
described starting on page 100.

SELECT city, SUM(sales), AVG(sales)
FROM customers
GROUP BY city
HAVING SUM(sales) > 100000.00;

6.20.6 The ORDER BY Rule

The ORDER BY rule is used to sort the results of the SELECT command. The results
are sorted by the values contained in the columns defined using the ORDER BY rule. In
addition, you can define whether the output is sorted in ascending (ASC) or descending
(DESC) order. The default is ascending order. The columns are referenced in the same way
as in the GROUP BY rule. The columns are processed in the order in which they appear in
the command (from left to right).

SELECT * FROM customers ORDER BY name;

SELECT city, SUM(sales), AVG(sales)
FROM customers
GROUP BY city
HAVING SUM(sales) > 100000.00
ORDER BY SUM(sales);

SELECT custno, name, city, sales
FROM customers
ORDER BY 3, sales DESC;

SQL/R A.01.00

6.21 SET Commands 126

6.21 SET Commands

6.21.1 SET DATE

SET DATE = "date fmt" ;

The SET DATE command controls the definition of a standard date format. The format
string date format contains either a specific date and time format (see Appendix B) or
user defined text and the date (e.g. “Today is %m/%d/%y”).

This standard format is the default date format when no other date format is specified in a
report.

The default date format is the american date format:

MM/DD/YY

6.21.2 SET LENGTH

SET LENGTH = lines ;

The SET LENGTH command is used to set the number of lines per page. The default is
24 lines (screen output) per page. This value determines where the page breaks appear in
the output. The page breaks apply to the results of the SELECT and REPORT commands
as well as the SHOW commands (SHOW FIELD, SHOW VIEW, and SHOW MACRO.

If the output is sent to the screen, the <RETURN> key is used to view the output page-by-
page. If the output is sent to a printer or file, an automatic form feed is executed.

To temporarily override this default page length, use the LENGTH rule within the REPORT
command.

To avoid diaplying a page header and page number, set the page length to zero using the
SET LENGTH = 0 expression.

6.21.3 SET LOCALE

SET LOCALE "category=language[@modifier]" ;

SQL/R A.01.00

Reference 127

category =

8>>>>>><
>>>>>>:

ALL
COLLATE
CTYPE
MONETARY
NUMERIC
TIME

9>>>>>>=
>>>>>>;

The SET LOCALE command is used to set a local condition (e.g. language)

The defaults shown here define the SQL/R environment.

Scope Environment Action Target
ALL LANG all subsequent
COLLATE LC COLLATE not currently used
CTYPE LC CTYPE characters typzierung
MONETARY LC MONETARY MONEY output
NUMERIC LC NUMERIC mumric outpur
TIME LC TIME date field output.

6.21.4 SET OUTPUT

SET OUTPUT =

8<
:

TERMINAL
PRINTER
[ASCII | DIF] FILE "filename"

9=
;;

The SET OUTPUT command is used to define the output device (and firmat). Possible
devices are screen, printer, or (disk)file. The default device is TERMINAL (stdout). The
printer used depends on the SET PRINTER rule. Output sent to a disk file is stored as it
would appear on the screen, namely in the page headings and page numbers. In addition,
supported output formats included ASCII and DIF. This enables you to export the data to
another application.

6.21.5 SET PRINTER

SET PRINTER = device;

TheSET PRINTER command is used to define the default printer. If no printer is specified,
the default printer is lp. The printer defined with the SET PRINTER command is the
printer that is used whenever the SET OUTPUT = PRINTER or REPORT . . . INTO
PRINTER expression is used. To send output directly to the printer (without using the
spooler), use the SET OUTPUT = FILE file name to define the device file.

SQL/R A.01.00

6.21 SET Commands 128

SET PRINTER = "lp -dlj -onb -ol72";
SET PRINTER = FILE "output";
SET PRINTER = ASCII FILE "output";

6.21.6 SET WIDTH

SET WIDTH = columns;

TheSET WIDTH command is used to define the number of columns for an output page. The
default is 80 columns. Output lines which are longer than 80 columns are right-truncated.
The title centering and page number position for a page are based on this value.

SQL/R A.01.00

Reference 129

6.22 SHOW Commands

6.22.1 SHOW DATE

SHOW DATE;

The SHOW DATE command displays the current date format. This format can be changed
using the SET DATE command.

6.22.2 SHOW FIELD

SHOW FIELD f * | field name g;

The SHOW FIELD command displays information about data fields and aliases for the
database currently open. If an asterisk (*) is used with the SHOW FIELD command,
all database items and aliases and their corresponding table names are displayed. Also
displayed is the description that was defined with the DESCRIBE AS rule of the FIELD
statement. The SHOW FIELD field name displays all the relevant information about a
field, including the following:

� the alias and its corresponding field or expression

� the field description defined using the DESCRIBE AS rule of the FIELD statement

� the database definition

� the output format

� an indication of the activity of the coded-value-translation

� lists of tables and views from which field name can be selected

6.22.3 SHOW LENGTH

SHOW LENGTH;

The SHOW LENGTH command displays the number of lines configured for a page. This
page length is set using either the SET LENGTH command or the LENGTH rule within
the REPORT command. A page length defined with the LENGTH rule will temporarily
(within the REPORT command) override the page length defined with the SET LENGTH
command.

SQL/R A.01.00

6.22 SHOW Commands 130

The page length value is used by SQL/R to control the page breaks.

6.22.4 SHOW LOCALE

SHOW LOCALE;

The SHOW LOCALE command displays either the values set with the SET LOCALE com-
mand or the default values. The default values depend on the user environment.

6.22.5 SHOW MACRO

SHOW MACRO f * | "macro name" g;

The SHOW MACRO command followed by a "macro name" displays the definition and
description of a macro. The "macro name" is a character string enclosed in quotation
marks. If the SHOW MACRO command is followed by an asterisk (*), then all the macros
are listed.

6.22.6 SHOW OUTPUT

SHOW OUTPUT;

The SHOW OUTPUT command displays the name of the output device which was defined
using the SET OUTPUT command. The default device is the screen. The output device
can be redefined using the SET OUTPUT command. In addition, you can use the INTO
rule of the REPORT command to define a different output device for a specific report.

6.22.7 SHOW PRINTER

SHOW PRINTER;

The SHOW PRINTER command displays the same of the default printer. Output is sent to
this printer whenever the SET OUTPUT = PRINTER or a REPORT ... INTO PRINTER
statement is used. You can use theSET PRINTER command to redefine the default printer.

SQL/R A.01.00

Reference 131

6.22.8 SHOW VIEW

SHOW VIEW f * | view name g;

The SHOW VIEW command displays information about all record types and views which
are defined for the currently in use database, or which were produced using the CREATE
VIEW command. If the SHOW VIEW command is followed by an asterisk (*), then all
record types and views are displayed with the description defined using theCREATE VIEW
command.

When a record type or view is specified, then detailed information is provided about the
following:

� view type

� description

� name and type of all fields in the record

SQL/R A.01.00

6.22 SHOW Commands 132

6.22.9 SHOW WIDTH

SHOW WIDTH;

The SHOW WIDTH command displays the number of columns in a page. The default is 80
columns. This value can be changed using the SET WIDTH command. Output lines which
are wider than the defined width are right-truncated. The report title and page number
position are centered using the value of the page width. The page width for a specific report
can be changed using the WIDTH rule of the REPORT command.

SQL/R A.01.00

A
Quick Reference Guide

CLOSE DATABASE ;

CREATE VIEW view name PATH occur spec path group

[DESCRIBE AS "description"] ;

occur spec =
�
OCCURRENCE occur name OF
occur name =

�
record name

path group = TO path element [AND path element [AND . . .]] [TO . . .]

path element =
�

(path element path group)
occur spec WHERE field name = [occur name.] field name

�

DEFINE ["]macro name["] AS "macro definition"
[DESCRIBE AS "description"] ;

EXIT ;

FIELD f alias = expression | field name g

[VALUES ARE([f "string" | num g =] "string" [, . . .])]
[DISPLAY AS [LEFT | CENTER | RIGHT] format]
[DESCRIBE AS "description"] ;

format =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(length)
INT(length)
LONG(length)
FLOAT(length, decimal places)
DOUBLE(length, decimal places)
FIXED(length, decimal places)
MONEY(length [, decimal places])
DATE [("date format" [, length])]

[FROM f SYSDATE | YYYY g]
TIME [(length)]

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

Quick Reference Guide 134

HELP [f identifier | "string"g] ;

OPEN DATABASE "database name" [AS "password"] [, . . .] ;

REPORT SELECT [CALCULATE field calc [, . . .]]2
4 INTO

8<
:

TERMINAL
PRINTER
[ASCII | DIF] FILE "filename"

9=
;

3
5

[report fmt]
[USING "report form"] ;

field calc =

2
66664

8>>>><
>>>>:

SUM
AVG
MIN
MAX
COUNT

9>>>>=
>>>>;
(field ref [, . . .]) ["row label"]

3
77775

BREAK ON

�
(field ref [, . . .])
REPORT

� �
SKIP [n]
PAGE [n]

�

report fmt = [TITLE AS "report title"]
[DATE AS f TODAY | "date string" g]
[LENGTH = num]
[WIDTH = num]

[RUN] file name [("arg" [, "arg"] . . .)] ;

SELECT [ALL | DISTINCT]
f* | expression ["alternate heading"] [, . . .] g
[FROM view name]
[WHERE cond expression]
[GROUP BY col ref [, . . .] [HAVING cond expression]]
[ORDER BY col ref [ASC | DESC] [, . . .]] ;

SET LOCALE "category=language[@modifier]" ;

SQL/R A.01.00

Quick Reference Guide 135

category =

8>>>>>><
>>>>>>:

ALL
COLLATE
CTYPE
MONETARY
NUMERIC
TIME

9>>>>>>=
>>>>>>;

SET DATE = "date fmt" ;

SET OUTPUT =

8<
:

TERMINAL
PRINTER
[ASCII | DIF] FILE "filename"

9=
; ;

SET

8<
:

LENGTH = lines
PRINTER = "device"
WIDTH = columns

9=
; ;

SHOW

8>>>>>>>>>>>><
>>>>>>>>>>>>:

DATE
FIELD f * | field name g
LENGTH
LOCALE
MACRO f * | "macro name" g
OUTPUT
PRINTER
VIEW f * | view name g
WIDTH

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

;

SQL/R A.01.00

B
Date and Time Formats

A date format is a formatting command consisting of text and format codes. A format code
is preceded by a % character:

Code Length Description

%a 2 day-of-week (short alphabetic notation)
%A 10 day-of-week (alphabetic)
%b 5 month (short alphabetic notation)
%B 10 month (alphabetic)
%c * date and time
%d 2 day-of-month (01–31)
%H 2 hour (24 hour clock) (00–23)
%I 2 hour (12 hour clock) (01–12)
%j 3 day-of-year (001-366)
%m 2 month (numeric notation) (01–12)
%M 2 minutes (00-59)
%p 2 AM or PM (if necessary)
%S 2 seconds (00–59)
%U 2 week-of-year (00-53)

(the first sunday of a year is the first day of week 1)
%w 1 day-of-week (numeric) (0(sunday)–6)
%W 2 week-of-year (00-53)

(the first monday of a year is the first day of week 1)
%x * date
%X * time
%y 2 year (last two digits only) (00-99)
%Y 4 year (4 digits)
%Z 4 time zone (if necessary)
%% 1 %-character

In the previous table, the specifications for the column length are the default length used
by SQL/R if no other values are specified. These values are not required to correspond
with the actual lengths. If the actual length is longer than the speciified length, the output
is right-truncated.

Date and Time Formats 137

The codes having a length marked with an asterisk (*) in the table have lengths which are
dependent on the work environment.

In addition, it is also possible to include length and adjustment specifications between the
"%" character and the format code. These specifications are shown here:

[� | 0] n The n represents a number specifying the minimum field length of the formatted
output. This output is then left or right justified. By default, the output is right
justified with leading spaces. If the option� is used, the resulting output is left
justified with trailing spaces. If the zero 0 option is used, the resulting output
is right justified with leading zeros.

.p For numeric output, (%d, %H, %I, %j, %m, %M, %S, %U, %w, %W, %y,
%Y), the .p represents the minimum number of characters. If the result has
fewer digits than the minimum, leading zeros are added.
If the output produces a character string, (%a, %A, %b, %B, %c, %p, %x, %X,
%Z, %%) then .p represents the maximum number of characters. If the result
has more characters than the maximum specified, the result is right-truncated.

SQL/R A.01.00

Date and Time Formats 138

Examples:

Format Result Comment

%A September no length specified
%.3A Sep maximum length = 3 characters
%d.%m.%y 08.05.92 no length specified
%.1m/%.1d/%y 5/18/92 minimum length = 1 (month, day)
%3d.%-3m.%05y 8.5 .00092 day and month use a minimum length of 3,

day is right justified, month is left justified,
minimum length for year is 5 characters with
leading zeros.

If the work environment has been defined with a LOCALE “TIME=german” command, the
following formats are pre-defined:

Code Format Example

%c %a., %d. %b %Y, %H:%M:%S Fr., 08. Mai 1992, 10:28:05
%x %a., %d. %b %Y Fr., 08. Mai 1992
%X %H:%M:%S 10:28:05

If the work environment has been defined with a LOCALE “TIME=american” command,
the following formats are pre-defined:

Code Format Example

%c %a, %b %1d, %Y, %I:%M:%S %p Mon, May 8, 1992, 10:28:05 AM
%x %a, %b %1d, %Y Mon, May 8, 1992
%X %I:%M:%S %p 10:28:05 PM

Date format consists of a maximum of 70 characters. This 70 character maximum applies
to both the format codes and the resulting text.

The time formats are only significant in conjunction with date variables defined using
the system format for defining dates (where the date format is calculated by counting
the number of seconds since Jan 1, 1970). This also applies to fields defined using the
FIELD . . . DISPLAY AS DATE . . . FROM SYSDATE statement or REPORT . . . DATE
AS statement.

SQL/R A.01.00

C
Differences between SQL/R and standard
SQL

The SQL/R language is based on standard SQL. However, there are differences which are
the result from the distinct goals of the two languages. These differences are described
here:

� SQL/R only reads data from a database. Database changes or deletions are not
possible.

� SQL/R supports the use of Arrays. Standard SQL does not support the use of Arrays.

� The standard SQL functions CHAR, LENGTH, DATE, DAYS, TIME, HOUR, MINUTE,
and SECOND are not supported with SQL/R.

� SQL/R contains the additional functions UPPER, LOWER, TRIM and STRLEN.

� The CREATE VIEW command is handled differently by the SQL/R language and
standard SQL. Both the syntax and action of the command are different.

� The SELECT command of SQL/R does not include the full functionality of the
standard SQL SELECT command. There is no UNION option and no subselect. In
addition, it is not possible to access several tables within one SELECT command. To
do this using SQL/R, you use the CREATE VIEW command to create a view before
using the SELECT command. The ORDER BY rule can only be used for columns
which are listed (referenced) within the SELECT command. Sorting of fields which
are not produced is also not possible.

� SQL/R contains a number of functions which are not included in standard SQL.
These functions are designed especially for formatting lists. These functions are
provided using the REPORT, FIELD, RUN, SET, and SHOW commands.

D
Work Environment

Using environment variables you can define the work environment; specifically to adjust
programs to your needs. The following section describes the environmental variables used
by SQL/R.

Environmental variables are HP-UX Shell variables which can be accessed by other pro-
grams. The commands described in the following section are used to set the environmental
variables.

For example:

LANG=american
export LANG

These commands set the HP-UX shell variable LANG to the value american and gives
other programs access to this variable.

Work Environment 141

SQL/R uses the following environmental variables:

Variable Short Description
TERM terminal type
LINES number of lines (if different)
COLUMNS number of columns (if different)
LANG language and language environment
LC COLLATE collating sequence (if different)
LC CTYPE character type (if different)
LC MONETARY output format for MONEY (if different)
LC NUMERIC numeric output format (if different)
LC TIME date/time output format (if different)
QPATH list of directories containing files for SQL/R
TZ time zone
LPDEST output device for lp (alternate to standard printer)
TMPDIR directory for temporary files

These environmental variables are described in detail in the following sections. For addi-
tional information, use the following HP-UX shell command:

man 5 environ

Description of the environmental variables:

QPATH QPATH contains a list of directories which SQL/R searches for the qif,
qrf and form files, if the pathname was not specified in the program. For
example if a filename was specified without a leading slash (/).

The directories in the list are separated by a colon (:).

For example: /sqlr:/usr/sqlr/sample

searches in the directories /sqlr and /usr/sqlr/sample.

LANG The LANG variable sets the defaults for language and character set (for
example, the use of characters unique to a specific language). The values
for LANG are specified in english (see lang(5)).

If no LANG value is specified, a default of english (with no special
characters) is used.

The Editor program, screen messages and function key labels are deter-
mined by the LANG variable.

SQL/R A.01.00

Work Environment 142

LC . . . LC COLLATE, LC CTYPE, LC MONETARY, LC NUMERIC and LC TIME.
These LC . . . variables allow you to specify the country-related defaults
which deviate from the values predetermined by the LANG variable.

If these variables are not set, then an appropriate default value is provided
by the LANG variable. You can also set default values for these variables
using the SET LOCALE command within SQL/R.

LC COLLATE, LC CTYPE, LC MONETARY, LC NUMERIC and LC TIME
can be set using the following format:

language [@modifier]

The @modifier field allows you to set a different value for a specific
variable while keeping the remaining default values for that language.
An example would be setting a different collating sequence. You can use
the man pages of nlsinfo(1) to obtain a list of the possible values.

For example, to configure german screen messages, but use the dutch
names for the months you set the following variables to the values shown
here:

LANG=german
LC TIME=dutch

SQL/R A.01.00

Work Environment 143

Variable Changes/Defines
LC COLLATE Collating sequence.

This variable is used to set the collating sequence.
Note: It is currently not used.

LC CTYPE Character type.
This variable is used to define which charac-
ters are treated as alphabetic characters and how
lower and upper case characters can be changed.

LC MONETARY Monetary output format.
This variable is used to define how monetary
amounts are displayed. For example, how many
decimal places are displayed and how money is
grouped.

LC NUMERIC Numeric output format.
This variable is used to define the numeric out-
put format. For example, whether a period or a
comma preceeds the decimal places.

LC TIME Date field output format.
This variable is used to define the output for-
mat for date information such as day and month
names.

TERM The TERM variable defines the terminal type. This is required because
SQL/R supports specific terminal types.

COLUMNS The COLUMNS variable defines the number of columns for the terminal
display. If no value is specified, a default value of 80 characters per line
is used.

LINES The LINES variable defines the number of lines for the terminal display.
If no value is specified, a default value of 24 lines is used.

TZ The TZ variable defines the time zone.

LPDEST The LPDEST variable is used to define the name of the default printer
used by the lp command. This printer is used if no alternate printer was
defined using option -d.

If no value is specified, the standard printer for that system is used.

TMPDIR The TMPDIR variable defines the directory used for temporary files. If
no value is specified, the directory /tmp is used.

SQL/R A.01.00

E
HP Eloquence Format Numbers

The HP Eloquence format numbers are defined for a database by either the schema or the
dbmods utility. These numbers are then used by HP Eloquence QUERY to evaluate and
format data. When SQL/R opens a database it translates these numbers to the corresponding
format.

The HP Eloquence format numbers are cumulative codes. For each group or attribute, a
code value is added.

Group Value Comments

Query Write inhibit
No write inhibit (default) 0 (ignored)
Write inhibit 1 (ignored)
Item type
Date type 2 DATE (FROM 1972)
Currency 4 MONEY
Undefined 6 (ignored)
Spacing
Default 0 (ignored)
Comma every 3 digits 8 (ignored)
Post decimals
Default 0 (ignored)
FIXED 0 16 (1)
FIXED 1 32 (1.0)
FIXED 2 48 (1.00)
FIXED 4 80 (1.000)
FIXED 3 64 (1.0000)
FIXED 5 96 (1.00000)
FIXED 6 112 (1.000000)

For the item types MONEY and DATE, all further entries are ignored.

The number of decimal places (post decimals) are recognized for floating point decimal
data types (float, double) only.

HP Eloquence Format Numbers 145

Examples:

Date = 2
Money = 4
Value with 2 decimal places = 48

SQL/R A.01.00

F
Glossary

This appendix provides definitions and explanations for many of the terms and expressions
used in this manual.

ARGUMENT

An independent variable

ARITHMETICAL EXPRESSION

Contains arithmetical operations and operators which result in a single numeric value

ARITHMETICAL OPERATOR

A symbol used to represent a mathematical operation. For example:

+ = Addition
� = Subtraction
� = Multiplication
= = Division

ARITHMETICAL OVERFLOW

Represents a condition that occurs when the result of a calculation exceeds the defined
boundaries of the value range.

ASCII

Acronym for “American Standard Code for Information Interchange”. This is a
common standard for information exchange.

BYTE

Represents a standardized unit of data. A byte consists of 8 bits. A byte is required
to store one ASCII character.

CHARACTER SET

Defines all the possible characters which can be used in a data field. The possible
characters are defined by the data type of the field.

Glossary 147

CHARACTER STRING

A sequence of characters. Character strings are enclosed in quotation marks.

COLUMN

A data item (field) of a data structure within a database.

COLUMN NAME

The unique name assigned to a column or field within a database table.

COMMAND

Generally, an instruction to the operating system. The term “STATEMENT” is
another term for an SQL/R instruction.

COMPARISON / RELATIONAL OPERATORS

Symbols such as =, > and < that indicate the relationship between two values.

CONSTANT

A fixed, constant value. The opposite of a variable.

DATABASE

A collection of related data which is stored together. A database is used to store
the data of one or more applications in an optimal form without disadvantageous
or unnecessary redundancy. The data is stored independently of the application
programs which use the data. The programs have a common, controlled access to
the database by using a database language such as SQL. Depending on the database
language used, you can add, modify, or delete database entries.

DATABASE DEFINITION

A description of the storage format, tables and columns of an individual database.

DATA TYPES

All the available types used to produce a column. SQL/R supports the following data
types:

CHAR, SHORT, INT, LONG, FLOAT, DOUBLE, DATE, FIXED, MONEY and
TIME

DEFAULT

The attribute, value, option, or setting used if no other value is specified.

SQL/R A.01.00

Glossary 148

DEFINE

Represents an SQL/R command. The DEFINE rule can be used with other SQL/R
commands to define short notations and place holders (macros).

EXIT

The SQL/R command which is used to end an SQL/R process. All commands after
the EXIT command in a file are ignored.

EXPRESSION

This is either an operand or a combination of operands and operators which results
in a single value.

FIELD

Another representation of columns in a database table, also referred as ITEMs or
DATA FIELDs.

FIELD COMMAND

An SQL/R command that has several uses. For example, the FIELD command can
be used to define an alternate name for fields and expressions or to specify the output
format of data fields. It can also be used to set values in reference to coded data fields.

GROUP BY

A rule within the SELECT command which is used to create groups.

HAVING

A rule within the SELECT command which is used to filter out selected individual
results of the GROUP BY rule. This rule can only be used in combination with the
GROUP BY rule.

HELP

Displays informationabout the meaning of an identifier, such as a FIELD, RECORDS
or MACRO. You can get additional information about each of these identifiers by
using the appropriate SHOW command along with the identifier.

INDEX

A collection of data about the position of records within a table. These index keys
enable faster access to the data.

LINE

A horizontal entry in a database table. The terms RECORD or DATA LINE are also
used.

SQL/R A.01.00

Glossary 149

MATHEMATICAL FUNCTION

Functions used on the columns of a data record. For example: AVG, COUNT, MIN,
MAX, SUM.

OBJECT

An object is a table, view, or index.

ORDER BY

A rule used wthin the SELECT command to specify the sort order of the SELECT
command results.

PARAMETER

Information or data given to a command or function which affects the results of the
command or function. Parameters can be specified by either a user or a program.

RECORD

A database entry. A record is a row in a database table. A record consists of fields.

REPORT

The REPORT command and the SELECT command are the most important SQL/R
commands. The REPORT command displays the results produced by the SELECT
command.

RESULT TABLE

A quantity of result lines which are produced by a SELECT command.

RULE

A syntactically separate part of an SQL/R command. This part is identified during
the syntax analysis of the entire command.

SELECT

The SELECT command is the most important SQL/R command because it is used
to define the data to be retrieved from the database. Rules are part of the SELECT
command and used to further define the data to be returned by theSELECT command.

SET

Used to set defaults such as page length and width.

SHOW

Used to display detailed information about objects such as fields, records, and views.

SQL/R A.01.00

Glossary 150

SQL

Abbreviation for “Structured Query Language”. This is a general term for a database
query language such as INGRES or INFORMIX. Structured query languages are
used to create and use relational databases.

STATEMENT

An instruction used in a high level language such as SQL/R. Examples are the
SELECT and REPORT commands.

STRING

A sequence of characters (character string).

TABLE

A relative (relational) object in which data is stored. A table contains horizontal lines
(also called RECORDs or data lines) and vertical columns (also called FIELDs).

VALUE

Is a measurable item assigned to a constant, a variable, or a parameter.

VARIABLE

A data unit, such as a number, which is defined in a high level language and used to
assign a value. Examples are: single characters or a data line structure.

VIEW

An SQL/R command used to define a logical table which presents a specific view of
existing physical tables of a database.

WHERE

A rule within the SELECT command. This rule is used to establish conditions for
the desired results of a SELECT command.

SQL/R A.01.00

Index

*, 101, 123
.qif, 112
.qrf, 121
;, 10
$, 66
$date, 63, 118, 119
$n, 66, 67
$page, 63, 118, 119
&, 55

A
Alias, 89
ALL, 95, 97, 123, 134
AND, 16–18, 21, 79, 80, 100, 101, 103, 133
Array, 88
ASC, 22, 123, 125, 134
ASCII, 114, 127, 134, 135
AVG, 27, 95, 96, 114, 115, 134

B
BETWEEN, 16, 21, 100, 101
BREAK ON, 60, 73, 74, 114, 115, 118, 134
BREAK ON REPORT, 60, 73, 115

C
CALCULATE, 58, 60, 63, 71–73, 84, 97, 114,

115, 134
CENTER, 108, 110, 133
CLOSE DATABASE, 102, 112, 133
COUNT, 27, 28, 60, 74, 95, 97, 114, 115, 134
CREATE VIEW, 75–81, 84, 88, 89, 103, 123,

124, 131, 133, 139

D
Data Types, 91
Dataset,�! Table
DATE, 91, 108, 110, 133, 135, 138, 144
DATE AS, 58, 63, 114, 117, 119, 134, 138

DATE AS TODAY, 117
DAY, 95, 97
DEFINE, 106, 133, 148
DESC, 22, 72, 123, 125, 134
DESCRIBE AS, 103, 106, 108, 129, 133
DIF, 114, 127, 134, 135
DISPLAY AS, 65, 71, 84, 108–111, 133, 138
DISPLAY AS DATE, 94, 111
DISPLAY AS FIXED, 111
DISPLAY AS TIME, 111
DISTINCT, 24, 28, 95–97, 123, 134
DOUBLE, 108, 133

E
Entry,�! Record
EXIT, 71, 74, 107, 133, 148

F
Field, 88
FIELD, 55, 65, 71, 72, 76, 82, 84, 89, 91, 94,

108–110, 112, 129, 133, 135, 138,
139, 148

Field Reference, 88
FILE, 114, 127, 134, 135
FIXED, 91, 108, 110, 111, 133
FLOAT, 108, 133
FROM, 12, 14, 53, 108, 111, 122, 123, 133,

134
FROM SYSDATE, 111, 138

G
GROUP, 56
GROUP BY, 12, 32, 33, 71, 74, 84, 97, 123–

125, 134, 148

H
HAVING, 32–34, 100, 123, 125, 134
HELP, 107, 134

I

SQL/R A.01.00

INDEX 152

IF, 71, 72, 95, 98–100
IN, 16, 20, 100, 101
INT, 108, 109, 111, 133
INTO, 114, 116, 130, 134
INTO PRINTER, 61, 127, 130
Item, �! Field

L
LEFT, 108, 110, 133
LENGTH, 60, 114, 126, 129, 134, 135
LIKE, 16, 29, 31, 100, 101, 122
LOCALE, 93, 135, 138
LONG, 108, 109, 111, 133
LOWER, 98, 99, 139
lp, 127, 143

M
MACRO, 135
MAX, 27, 95, 96, 114, 115, 124, 134
MIN, 27, 95, 96, 114, 115, 134
MONEY, 91, 92, 108, 110, 111, 133, 141, 144
MONTH, 95, 97

N
NOT, 16, 100

O
Occurrence, 88
OCCURRENCE, 103, 133
OPEN DATABASE, 13, 52, 86, 87, 102, 112,

134
OR, 16, 18, 20, 100, 101
ORDER BY, 12, 22, 53, 56, 84, 123, 125, 134,

139
OUTPUT, 135

P
PAGE, 73, 114, 115, 118, 134
PAGE[n], 73
Path, 89
PATH, 76, 103, 133
PRINTER, 114, 127, 134, 135

R

Record, 88
REPORT, 57, 58, 60, 62, 63, 71, 81, 84, 97,

114–116, 118, 119, 126, 127, 129,
130, 132, 134, 138, 139, 149, 150

REPORT SELECT, 114, 134
Reserved Words, 90
RIGHT, 108, 110, 133
RUN, 87, 119, 121, 134, 139

S
SELECT, 12, 15, 16, 23–25, 32, 53, 55, 56,

62, 63, 74, 75, 81, 84, 97, 99, 100,
108, 114, 115, 118, 122–126, 134,
139, 148–150

SELECT DISTINCT, 123
SET, 135, 139
SET DATE, 58, 63, 111, 119, 126, 129, 135
SET LENGTH, 116, 123, 126, 129
SET LOCALE, 126, 127, 130, 134, 142
SET OUTPUT, 116, 127, 130, 135
SET OUTPUT = FILE, 127
SET OUTPUT = PRINTER, 127, 130
SET PRINTER, 61, 127, 130
SET WIDTH, 128, 132
SHORT, 109, 111
SHOW, 107, 126, 135, 139, 148
SHOW DATE, 129
SHOW FIELD, 108, 126, 129
SHOW LENGTH, 129
SHOW LOCALE, 130
SHOW MACRO, 126, 130
SHOW OUTPUT, 130
SHOW PRINTER, 130
SHOW VIEW, 126, 131
SHOW WIDTH, 132
SKIP, 73, 114, 115, 118, 134
sqlr, 86
sqlred, 86
sqlrexec, 66, 67, 71, 86, 87
STRLEN, 95, 97, 139
SUBSTR, 98, 99
SUM, 27, 32, 56, 60, 73, 74, 95, 96, 114, 115,

124, 134

SQL/R A.01.00

INDEX 153

SYSDATE, 108, 133

T
Table, 88
TERMINAL, 114, 127, 134, 135
TIME, 91, 108, 110, 133
TITLE AS, 58, 62, 114, 117, 134
TO, 80, 103, 133
TODAY, 58, 114, 134
TRIM, 98, 99, 139

U
UPPER, 98, 99, 139
USING, 62, 67, 84, 114, 116–119, 134

V
VALUES ARE, 82, 108, 109, 133
VIEW, 135

W
WHERE, 12, 16, 26, 32, 33, 53, 66, 84, 100,

103, 122–125, 133, 134
WIDTH, 114, 116, 132, 134, 135

X
XOR, 100, 101

Y
YEAR, 95, 97

SQL/R A.01.00

